Quantum computers counting on carbon nanotubes

March 21, 2013, Technical University Munich
A nanotube (black) can be clamped and excited to vibrate like a guitar string. An electric field (electrodes: blue) ensures that two of the many possible states can be selectively addressed. Credit: Michael J. Hartmann, TUM

Carbon nanotubes can be used as quantum bits for quantum computers. A study by physicists at the Technische Universitaet Muenchen has shown how nanotubes can store information in the form of vibrations. Up to now, researchers have experimented primarily with electrically charged particles. Because nanomechanical devices are not charged, they are much less sensitive to electrical interference.

Using quantum mechanical phenomena, computers could be much more powerful than their classical digital predecessors. Scientists all over the world are working to explore the basis for quantum computing. To date most systems are based on electrically charged particles that are held in an "electromagnetic trap." A disadvantage of these systems is that they are very sensitive to electromagnetic interference and therefore need extensive shielding. Physicists at the Technische Universitaet Muenchen have now found a way for information to be stored and quantum mechanically processed in mechanical vibrations.

Playing a nano-guitar

A that is clamped at both ends can be excited to oscillate. Like a guitar string, it vibrates for an amazingly long time. "One would expect that such a system would be strongly damped, and that the vibration would subside quickly," says Simon Rips, first author of the publication. "In fact, the string vibrates more than a million times. The information is thus retained up to one second. That is long enough to work with."

Since such a string oscillates among many physically equivalent states, the physicists resorted to a trick: an electric field in the vicinity of the nanotube ensures that two of these states can be selectively addressed. The information can then be written and read optoelectronically. "Our concept is based on available technology," says Michael Hartmann, head of the Emmy Noether research group and at the TU Muenchen. "It could take us a step closer to the realization of a quantum computer."

Explore further: Physicists demonstrate the quantum von Neumann architecture

More information: Quantum Information Processing with Nanomechanical Qubits, Simon Rips and Michael J. Hartmann, Physical Review Letters, 110, 120503 (2013) DOI: 10.1103/PhysRevLett.110.120503

Related Stories

Smallest vibration sensor in the quantum world

March 15, 2013

Carbon nanotubes and magnetic molecules are considered building blocks of future nanoelectronic systems. Their electric and mechanical properties play an important role. Researchers of Karlsruhe Institute of Technology and ...

Playing quantum tricks with measurements

February 15, 2013

A team of physicists at the University of Innsbruck, Austria, performed an experiment that seems to contradict the foundations of quantum theory—at first glance. The team led by Rainer Blatt reversed a quantum measurement ...

Electromechanics also operates at the nanoscale

May 9, 2011

What limits the behaviour of a carbon nanotube? This is a question that many scientists are trying to answer. Physicists at University of Gothenburg, Sweden, have now shown that electromechanical principles are valid also ...

Recommended for you

Unusual sound waves discovered in quantum liquids

July 20, 2018

Ordinary sound waves—small oscillations of density—can propagate through all fluids, causing the molecules in the fluid to compress at regular intervals. Now physicists have theoretically shown that in one-dimensional ...

A phonon laser operating at an exceptional point

July 20, 2018

The basic quanta of light (photon) and sound (phonon) are bosonic particles that largely obey similar rules and are in general very good analogs of one another. Physicists have explored this analogy in recent experimental ...

A physics treasure hidden in a wallpaper pattern

July 20, 2018

An international team of scientists has discovered a new, exotic form of insulating material with a metallic surface that could enable more efficient electronics or even quantum computing. The researchers developed a new ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (1) Mar 21, 2013
…."Our concept is based on available technology," says Michael Hartmann, head of the Emmy Noether research group Quantum Optics and Quantum Dynamics at the TU Muenchen. "It could take us a step closer to the realization of a quantum computer."

It seems that technology is a real one, but not for a quantum computer, until we could understand the mystery basic foundation of quantum mechanics! Maybe this physical mechanism could help the matter.
http://www.vacuum...19〈=en

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.