Researchers discover new cancer target

February 28, 2013, The Biochemical Society

New research published today in the Biochemical Journal describes the discovery of a new cancer target.

PI3K is a name given to a family of enzymes that are involved in cell growth, proliferation, differentiation and many other cellular functions.

These enzymes are also implicated in many cancers and PI3K signalling is a target for treatments.

Now, researchers at Bart's Cancer Institute in London have discovered a previously unrecognized mechanism by which PI3K sustains the proliferation of . It appears that PI3K modulates the concentration of spermidine, a polyamine involved in .

Writing in the , the researchers explain that there are two controlling each other's activities in a kind of feedback loop: that of the enzymes PI3K and ornithine decarboxylase. Restricting the action of both led to a dramatic shrinkage of tumours in xenograft models.

"Our work provides new insights into the intriguing interlink that exists between signalling and and how these synergize in the development of cancers," said Dr Pedro Cutillas, of the Barts Cancer Institute, Queen Mary University of London, and one of the authors. "I hope this study will inspire new avenues in the exploration of cancer therapies that target metabolic and signalling pathways."

To aid in the dissemination of this important discovery, Portland Press Limited has made online access to this paper free for a limited period.

Explore further: Therapy exploits 'addiction' of leukemia cells

More information: Rejeeve, V. et al. Polyamine production is downstream and upstream of oncogenic PI3K signalling and contributes to tumour cell growth, Biochemical Journal (2013) 450 619–628. doi:10.1042/BJ20121525

Related Stories

Therapy exploits 'addiction' of leukemia cells

April 16, 2012

A new study describes a therapeutic approach to halting cancer progression by exploiting a previously unrecognized "addiction" of leukemia cells to specific signaling molecules. The research, published by Cell Press online ...

Recommended for you

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

3-D culturing hepatocytes on a liver-on-a-chip device

January 17, 2019

Liver-on-a-chip cell culture devices are attractive biomimetic models in drug discovery, toxicology and tissue engineering research. To maintain specific liver cell functions on a chip in the lab, adequate cell types and ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.