'Self-assembly' technique for making cheap, high-density data storage

October 11, 2012

Imagine being able to store thousands of songs and high-resolution images on data devices no bigger than a fingernail. Researchers from A*STAR's Institute of Materials Research and Engineering (IMRE) and the National University of Singapore (NUS) have discovered that an ultra-smooth surface is the key factor for "self-assembly".

Self-assembly is a a cheap, high-volume, high-density patterning technique. It allows manufacturers to use the method on a variety of different surfaces. This discovery paves the way for the development of next generation data , with capacities of up to 10 /in2 which could lead to significantly greater storage on much smaller data devices.

The "self-assembly" technique is one of the simplest and cheapest high-volume methods for creating uniform, densely-packed that could potentially help store data. Self-assembly is one of the leading candidates for large scale at very high pattern densities. One of its most obvious applications will be in the field of bit patterned media, or the hard disk industry . It is widely used in research and is gaining acceptance in industry as a practical lithographic tool for sub-100 nm, low-cost, large area patterning. However, attempts to employ self-assembly on different types, such as magnetic media used for data , have shown varying and erratic results to date. This phenomenon has continued to puzzle industry researchers and scientists globally.

Researchers from A*STAR's IMRE and NUS have now solved this mystery and identified that the smoother the surface, the more efficient the self-assembly of nanostructures will be. This breakthrough allows the method to be used on more surfaces and reduce the number of defects in an industrial setting. The more densely packed the structures are in a given area, the higher the amount of data that can be stored.

"A height close to 10 atoms, or 10 angstroms in technical terms, is all it takes to make or break self-assembly," explained Dr MSM Saifullah, one of the key researchers from A*STAR's IMRE who made the discovery. This is based on a root mean squared surface roughness of 5 angstrom. The team discovered that this was the limit of surface roughness allowed for the successful self-assembly of dots, which could eventually be used in making high-density . "If we want large scale, large area nanopatterning using very affordable self-assembly, the surface needs to be extremely smooth so that we can achieve efficient, successful self-assembly and with lower incidences of defects."

The discovery was recently published in Scientific Reports, an open access journal from Nature.

Explore further: Packing in six times more storage density with the help of table salt

Related Stories

Nanomaterials: Pillars of the assembly

September 29, 2011

The ever-increasing demand for enhanced performance in electronic devices such as solar cells, sensors and batteries is matched by a need to find ways to make smaller electrical components. Several techniques have been proposed ...

A new way to build nanostructures

July 7, 2011

The making of three-dimensional nanostructured materials -- ones that have distinctive shapes and structures at scales of a few billionths of a meter -- has become a fertile area of research, producing materials that are ...

Recommended for you

Atomic blasting creates new devices to measure nanoparticles

December 14, 2017

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.