New insights into membrane-assisted self-assembly

October 24, 2012
This shows the self-assembly process. Credit: Physical Review Letters/Richard James Matthews

How proteins and virus capsids - complex protein structures that encase the genetic material of viruses - form structures near to a fluctuating membrane is simulated by physicist Richard Matthews with advanced computational techniques. Matthews performs research as a Lise-Meitner-Fellow in the Computational Physics Group of the University of Vienna under the direction of Christos Likos, professor for Multiscale Computational Physics. The results are relevant to the understanding of biophysical processes and appear in the current issue of Physical Review Letters.

"In our current paper we present new computational results that explore how membranes may influence crucial biological processes", explains Richard Matthews, Lise-Meitner-Fellow at the University of Vienna and first author of the study. The focus of the investigation is the self-assembly of , the formation of structures or patterns without . More specifically, the effect of the interactions between membranes and proteins, which can influence the formation of ordered structures in cells, is considered.

Self-assembly has become a hot topic in recent years. Many of the most astonishing examples are found in nature, from tiny motors (e.g. the flagellum motor) to virus capsids with perfect spherical forms. Many researchers have also tried to improve our understanding by representing the assembly of such structures with models. In order to gain clear insight it is preferable that these models are as simple as possible. This approach has been very successful in reproducing key features of experiments, whilst also uncovering new aspects. In reality, these processes do not occur in isolation and, in fact, many happen on, or in the vicinity of, membranes, a fact that has been previously neglected in the construction of simple models.

Advanced Simulation Techniques

The research aims to find out the general properties of these fascinating systems by applying state of the art simulation techniques. This requires everything to be calculated on a computer. Due to the complexity of the task, high performance computers are necessary. "In our work we have applied advanced simulation techniques, which allowed us to see how interactions with a membrane influence self-assembly", explains Richard Matthews. "We determined that membranes promote self-assembly and also find that our model reproduces structures that are very similar to those seen in nature."

Explore further: Simulations aim to unlock nature's process of biomineralization

More information: Physical Review Letters. October 2012. DOI: 10.1103/PhysRevLett.109.178302

Related Stories

Gauging the forces between cells

July 19, 2012

Cell-cell junctions are important for communication, transport, signalling, waste evacuation and water homeostasis. An European project has investigated how biophysical forces can influence the fulfilment of this vast range ...

Model unfolds proteins gently

October 5, 2010

Protein molecules inside cells are constantly reorganizing themselves, driven by very tiny forces exerted by all the other molecules in their crowded environment. Most experimental techniques and theoretical/computational ...

Recommended for you

Nanostructures taste the rainbow

June 28, 2017

Engineers at Caltech have for the first time developed a light detector that combines two disparate technologies—nanophotonics, which manipulates light at the nanoscale, and thermoelectrics, which translates temperature ...

Injectable plant-based nanoparticles delay tumor progression

June 28, 2017

Researchers from Case Western Reserve University School of Medicine in collaboration with researchers from Dartmouth Geisel School of Medicine and RWTH Aachen University (Germany) have adapted virus particles—that normally ...

A levitated nanosphere as an ultra-sensitive sensor

June 28, 2017

Sensitive sensors must be isolated from their environment as much as possible to avoid disturbances. Scientists at ETH Zurich have now demonstrated how to remove from and add elementary charges to a nanosphere that can be ...

Researchers create very small sensor using 'white graphene'

June 28, 2017

Researchers from TU Delft in The Netherlands, in collaboration with a team at the University of Cambridge (U.K.), have found a way to create and clean tiny mechanical sensors in a scalable manner. They created these sensors ...

Ruthenium rules for new fuel cells

June 28, 2017

Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.