Scaling up polymer blobs

September 27, 2012, Springer
Scaling up polymer blobs

Scientists use simulations to test the limits of their object of study—in this case thin films of polymers—to extremes of scale. In a study about to be published in the European Physical Journal E, Nava Schulmann, a researcher at Strasbourg University, France, and colleagues use a well-known model capable of providing information on heat and mechanical energy exchange between these polymer chains. They found that polymer blends confined to ultrathin two-dimensional films displayed enhanced compatibility. This was made possible by simulations using a fairly standard model, which is simple enough to allow the efficient computation of dense large-chain systems.

The authors focused on making simulations of self-avoiding and highly flexible without chain intersections. To do so, they varied the level of polymer density, as well as their chain length, while using numerical methods to arrive at a universal view of polymer behaviour.

Thanks to molecular dynamics and so-called , they confirmed that such polymers adopt a scaling behaviour following a power law as a function of density and chain length. This scaling behaviour applies, for example, to polymer pressure and, hence, polymer compressibility. French Pierre-Giles de Gennes predicted this property in his so-called blob picture approach. Accordingly, a polymer chain is akin to a succession of blobs, like beads in a necklace.

Schulmann and colleagues focused on a regime relevant for applications, referred to as a semi-dilute regime. There, scaling occurs more universally as long as the initial blob size is well defined. Understanding the limit of a system of long chains can currently only be realised in simulations of simplified models. However, the authors hope their findings will facilitate the work of polymer experimentalists.²

Explore further: Bio-inspired polymer synthesis enhances structure control

More information: N. Schulmann, H. Meyer, P. Polińska, J. Baschnagel, and J.P. Wittmer, Strictly two-dimensional self-avoiding walks: Thermodynamic properties revisited, (2012) European Physical Journal E 35:93 DOI 10.1140/epje/i2012-12093-x

Related Stories

Single polymer chains as molecular wires

February 27, 2009

The research team of Leonhard Grill at Freie Universität Berlin - in collaboration with the synthetic chemistry group of Stefan Hecht from Humboldt University of Berlin and the theoretical physics group of Christian ...

Making light work of artificial muscles

January 21, 2011

A new form of self-assembling polymer film that bends and stretches when hit by light is pointing the way to a new family of functional materials. This flexing film is the first material to have been made by coaxing complex ...

Recommended for you

New fuel cell technology runs on solid carbon

January 22, 2018

Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory ...

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.