Mathematicians show how shallow water may help explain tsunami power

September 18, 2012, University of Colorado at Boulder
Understanding the interactions of X- and Y-shaped ocean waves may help explain why some tsunamis are so devastating, say two CU-Boulder mathematicians. Credit: University of Colorado

(Phys.org)—While wave watching is a favorite pastime of beachgoers, few notice what is happening in the shallowest water. A closer look by two University of Colorado Boulder applied mathematicians has led to the discovery of interacting X- and Y-shaped ocean waves that may help explain why some tsunamis are able to wreak so much havoc.

Professor Mark Ablowitz and doctoral student Douglas Baldwin repeatedly observed such wave interactions in ankle-deep water at both Nuevo Vallarta, Mexico, and Venice Beach, Calif., in the Pacific Ocean—interactions that were thought to be very rare but which actually happen every day near low tide. There they saw single, straight waves interacting with each other to form X- and Y-shaped waves as well as more complex wave structures, all predicted by , said Ablowitz.

When most collide, the "interaction height" is the sum of the incoming , said Baldwin. "But the wave heights that we saw from such interactions were much taller, indicating that they are what we call nonlinear," he said.

Y-type Interactions

of the 2011 tsunami generated by the that struck Japan indicate there was an X-shaped wave created by the merger of two large waves. "This significantly increased the of the event," said Ablowitz. "If the interaction had happened at a much greater distance from shore, the devastation could have been even worse as the amplitude could have been even larger. Not every tsunami is strengthened by interacting waves, but when they do intersect there can be a powerful multiplier because of the nonlinearity."

Ablowitz first observed the nonlinear wave action in 2009 while visiting Nuevo Vallarta just north of Puerto Vallarta with his family. He took hundreds of photographs and videos of the peculiar waves over the next several years.

Short-stem X-type Interactions

"Unlike most new physics, you can see these interactions without expensive equipment or years of training," said Ablowitz. "A person just needs to go to a flat beach, preferably near a jetty, within a few hours of low tide and know what to look for."

A paper on the subject by Ablowitz and Baldwin was published this month in the journal Physical Review E.

Long-stem X-type Interactions

Baldwin, who is studying under Ablowitz, wanted to go the extra mile to verify that the wave interactions observed by his professor were not unique to one beach. In this case he drove more than 1,000 miles to the Los Angeles area "on a whim" to search for the types of Ablowitz had observed in Mexico. He hit the jackpot at Venice Beach.

"I don't think there is anything more enjoyable in science than discovering something by chance, predicting something you haven't seen, and then actually seeing what you predicted," said Baldwin.

Explore further: Mathematicians provide new insight into tsunamis

More information: Nonlinear shallow ocean-wave soliton interactions on flat beaches (APS) (ArXiv), Physical Review E, vol. 86(3), pp. 036305 (2012). Synopsis on APS's Physics

www.douglasbaldwin.com/nl-waves.html

Related Stories

Mathematicians provide new insight into tsunamis

April 1, 2009

A new mathematical formula that could be used to give advance warning of where a tsunami is likely to hit and how destructive it will be has been worked out by scientists at Newcastle University.

Scientists discover new water waves

July 19, 2011

(PhysOrg.com) -- By precisely shaking a container of shallow water, researchers have observed wave behavior that has never been seen before. In a new study, Jean Rajchenbach, Alphonse Leroux, and Didier Clamond of the University ...

Understanding freak waves

September 27, 2011

(PhysOrg.com) -- Rogue waves, once considered nothing more than a sailor’s myth, are more predictable than ever thanks to new research from the oceanography team at Swinburne University of Technology.

Research pinpoints conditions favorable for freak waves

August 24, 2009

(PhysOrg.com) -- Stories of ships mysteriously sent to watery graves by sudden, giant waves have long puzzled scientists and sailors. New research by Assistant Professor of Geosciences Tim Janssen suggests that changes in ...

New research sheds light on freak wave hot spots

August 5, 2009

Stories of ships mysteriously sent to watery graves by sudden, giant waves have long puzzled scientists and sailors. New research by San Francisco State professor Tim Janssen suggests that changes in water depth and currents, ...

Recommended for you

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

New quantum memory stores information for hours

February 22, 2018

Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.