Tighter 'stitching' makes better graphene

June 1, 2012 By Anne Ju, Cornell University
False-color microscopy images show examples of graphene grown slowly, resulting in large patches with poor stitching, and graphene grown more quickly, resulting in smaller patches with tighter stitching and better performance. (Muller lab)

(Phys.org) -- Similar to how tighter stiches make for a better quality quilt, the "stitching" between individual crystals of graphene affects how well these carbon monolayers conduct electricity and retain their strength, Cornell researchers report.

The quality of this "stitching" -- the boundaries at which crystals grow together and form sheets -- is just as important as the size of the crystals themselves, which scientists had previously thought held the key to making better graphene.

The researchers, led by Jiwoong Park, assistant professor of chemistry and chemical biology and a member of the Kavli Institute at Cornell for Nanoscale Science, used advanced measurement and imaging techniques to make these claims, detailed online in the journal Science June 1.

Graphene is a single layer of , and are engaged in a sort of arms race to manipulate and enhance its amazing properties -- tensile strength, high , and potential applications in photonics, and electronics. Cartoons depict graphene like a perfect atomic chicken wire stretching ad infinitum.

In reality, graphene is polycrystalline; it is grown via a process called chemical vapor deposition, in which small crystals, or grains, at random orientations grow by themselves and eventually join together in carbon-carbon bonds.

A scanning electron microscope (SEM) image of graphene crystals growing on copper. The inset is a false-color SEM image of an electrical device consisting of a single grain boundary in graphene. (Wei Tsen/Park lab)

In earlier work published in Nature last January, the Cornell group had used electron microscopy to liken these graphene sheets to patchwork quilts -- each "patch" represented by the orientation of the graphene grains (and false colored to make them pretty).

They, along with other scientists, wondered how graphene's electrical properties would hold up based on its polycrystalline nature. Conventional wisdom and some prior indirect measurements had led scientists to surmise that growing graphene with larger crystals -- fewer patches -- might improve its properties.

The new work questions that dogma. The group compared how graphene performed based on different rates of growth via ; some they grew more slowly, and others, very quickly. They found that the more reactive, quick-growth graphene, with more patches, in certain ways performed better electronically than the slower growth graphene with larger patches.

As it turned out, faster growth led to tighter stitching between grains, which improved the graphene's performance, as opposed to larger grains that were more loosely held together.

"What's important here is that we need to promote the growth environment so that the grains stitch together well," Park said. "What we are showing is that grain boundaries were a main concern, but it could be that it doesn't matter. We are finding that it's probably OK."

Equal in importance to these observations were the complex techniques they used to make the measurements -- no easy task. A four-step electron beam lithography process, developed by Adam Tsen, an applied physics graduate student and the paper's first author, allowed the researchers to place electrodes on graphene, directly on top of a 10 nanometer-thick membrane substrate to measure of single grain boundaries.

"Our technique sets a tone for how we can measure atomically thin materials in the future," Park added.

Collaborators led by David A. Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science, used advanced transmission techniques to help Park's group image their graphene to show the differences in the grain sizes.

The work was supported by the Air Force Office of Scientific Research, and the National Science Foundation through the Cornell Center for Materials Research. Fabrication was performed at the Cornell NanoScale Science and Technology Facility.

Explore further: Graphene grains make atom-thick patchwork 'quilts'

Related Stories

Graphene grains make atom-thick patchwork 'quilts'

January 5, 2011

(PhysOrg.com) -- A quick look at new Cornell research hints at colorful patchwork quilts, but they are actually pictures of graphene -- one atom-thick sheets of carbon stitched together at tilted interfaces. Researchers have ...

Hydrogen may be key to growth of high-quality graphene

July 18, 2011

A new approach to growing graphene greatly reduces problems that have plagued researchers in the past and clears a path to the crystalline form of graphite's use in sophisticated electronic devices of tomorrow.

Writing graphene circuitry with ion 'pens'

March 27, 2012

The unique electrical properties of graphene have enticed researchers to envision a future of fast integrated circuits made with the one-carbon-atom-thick sheets, but many challenges remain on the path to commercialization. ...

Cornell scientists review future of graphene

November 9, 2011

(PhysOrg.com) -- Graphene is sort of a scientific rock star, with countless groups studying its amazing electrical properties and tensile strength and dreaming up applications ranging from flat-panel screens to elevators ...

Recommended for you

New technology for diagnosing immunity to Ebola

January 15, 2018

A promising new approach to detect immunity to Ebola virus infection has been developed by researchers from i-sense in a collaboration between UCL and Imperial College London.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 02, 2012
i am just starting in my studies of graphene and artificial graphene and appreciate any comments that may help me in learning. there are so many interested that i believe this is a tech that will drive our future and is well worth understanding.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.