Group uses controlled cracking for nanofabrication

May 10, 2012 by Bob Yirka report
Formation mechanism of an oscillating crack. Image (c) Nature doi:10.1038/nature11002

( -- When creating nanomaterials, cracking is generally considered a problem; it usually means something has gone wrong and the result, as with other material making processes such as glass or ceramics, almost always means either reprocessing or sending the sample to the trash bin. Now however, a research team in South Korea has found a way to cause cracking on purpose when fabricating a nanomaterial, to produce a required result. They describe their process and results in their paper published in the journal Nature.

To come up with their method, the team modified an old-fashioned technique commonly used for fashioning stone. Instead of smashing or chiseling, small holes are made in the stone where pieces of wood are inserted. Soaking the wood causes it to expand and crack the stone in just the right way.

In the lab, the researchers first etched very small notches and steps into a . They followed that by covering the substrate first with a very of and then with one of , creating a sandwich. Without the notches and steps, cracks would develop spontaneously and chaotically in such a sandwich; with them however, the cracking can be controlled. The notches cause stress in the substrate to be concentrated, forcing the cracking to begin where they were made. The steps serve as strong borders, confining the crack to just the area where it is wanted. In this way, cracks that occur are not allowed to follow the as they normally would, and are instead directed along desired pathways. Using this technique the team created cracks that formed straight lines, some that were oscillatory and some that were stitch-like. They say it could also be used to make cracks that actually form around corners. Also they point out how the same technique could be used to create channels in nanomaterials that rely on moving very tiny amounts of liquid material.

Using this technique, the team suggests, would generally be cheaper for nanofabrication than traditional electron beam etching and less time-consuming. They believe it could be used for making semiconductors and silicon chips as well as for making microfluidic products.

Explore further: New approach to understanding cracks

More information: Patterning by controlled cracking, Nature 485, 221–224 (10 May 2012) doi:10.1038/nature11002

Crack formation drives material failure and is often regarded as a process to be avoided. However, closer examination of cracking phenomena has revealed exquisitely intricate patterns such as spirals4, oscillating and branched fracture paths and fractal geometries. Here we demonstrate the controlled initiation, propagation and termination of a variety of channelled crack patterns in a film/substrate system comprising a silicon nitride thin film deposited on a silicon substrate using low-pressure chemical vapour deposition. Micro-notches etched into the silicon substrate concentrated stress for crack initiation, which occurred spontaneously during deposition of the silicon nitride layer. We reproducibly created three distinct crack morphologies—straight, oscillatory and orderly bifurcated (stitchlike)—through careful selection of processing conditions and parameters. We induced direction changes by changing the system parameters, and we terminated propagation at pre-formed multi-step crack stops. We believe that our patterning technique presents new opportunities in nanofabrication and offers a starting point for atomic-scale pattern formation, which would be difficult even with current state-of-the-art nanofabrication methodologies.

Related Stories

New approach to understanding cracks

February 3, 2006

Could engineers have known ahead of time exactly how much pressure the levees protecting New Orleans could withstand before giving way? Is it possible to predict when and under what conditions material wear and tear will ...

Writing graphene circuitry with ion 'pens'

March 27, 2012

The unique electrical properties of graphene have enticed researchers to envision a future of fast integrated circuits made with the one-carbon-atom-thick sheets, but many challenges remain on the path to commercialization. ...

Recommended for you

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.