Generating first-ever controlled ultrafast radiation, using a plasma

April 5, 2012, CNRS
Experimental set-up. The insert shows the electronic trajectories and the X-UV radiation induced by a laser field of several optical cycles. Credit: Antonin Borot

To observe ultrarapid phenomena such as the motion of electrons within matter, researchers need sources capable of producing extremely fast and energetic light radiation. Although devices capable of emitting pulses with attosecond (10-18 seconds) precision already exist, many research teams are striving to stretch the boundaries of these pulses' duration and intensity.

A French team headed by the Laboratoire d'Optique Appliquee, in collaboration with the CEA and the Laboratoire pour l'Utilisation des Lasers Intenses, has succeeded for the first time in accelerating and guiding in a plasma in a reproducible manner, using a . These electrons excite the plasma, which then emits ultrafast at wavelengths in the extreme ultraviolet. This high energy attosecond radiation could be used to study ultrarapid electronic processes. This work is published in .

Some events, such as the of an atom or an electron jumping from one to another, occur over typical time scales of the order of an attosecond (a billionth of a billionth of a second). To observe such events directly, of comparable duration need to be produced in order to acquire a “snapshot” of the evolution of the phenomenon, somewhat like a camera shutter. Until now, there was only one way to obtain such fast pulses, by exciting the electrons of a gas by laser. These electrons then emit a pulse in the (X-UV) domain. However, this method has limitations and, in order to observe certain phenomena, researchers need sources that are even faster and, above all, which have higher energy. This has prompted numerous research teams to study the physics of plasmas, an extremely hot and dense state of matter constituted of ions and electrons.

X-UV radiation spectrum as a function of the shape of the laser field. Credit: Antonin Borot

The team headed by the LOA is the first to have obtained attosecond pulses in the X-UV in a reproducible manner by controlling the excitation of a plasma by electrons accelerated in a laser field. To achieve this feat, the researchers first developed a very efficient laser source, making it possible to obtain illuminations one thousand to ten thousand times those used in gaseous media, and delivering a thousand pulses per second, each lasting around several femtoseconds (10-15 seconds). In addition, this source is phase-stabilized: all the pulses generated are identical. The researchers succeeded in focusing the full luminous intensity of the laser on a spot a little larger than a micron in diameter, on the surface of a silica target. The target matter is thus transformed into a plasma whose density is comparable to that of a solid. The electrons in this plasma are strongly accelerated by the electromagnetic field produced by the laser beam. When they pass through the plasma, they excite a collective motion of charges inside it, thus producing X-UV radiation, which the researchers were able to observe and analyze using a spectrometer.

This work should lead to a high-energy radiation source that physicists and chemists could use to probe electronic processes in matter with attosecond temporal resolution. The research team is now planning to improve its laser source in order to generate even faster radiation at shorter wavelengths (in the X-ray domain). This should be achieved by controlling the motion of electrons, which move at velocities close to the speed of light, in the plasma.

Explore further: Prestigious award for the generation of attosecond pulses

More information: Attosecond control of collective electron motion in plasmas. Antonin Borot, et al, Nature Physics, On line on the 26 March 2012. Paper published in May 2012.

Journal reference: Nature Physics search and more info website

Provided by: CNRS search and more info website


Related Stories

Prestigious award for the generation of attosecond pulses

May 23, 2006

Professor Ferenc Krausz, Director at Max Planck Institute of Quantum Optics, receives the 2006 IEEE/LEOS Quantum Electronics Award This award recognizes truly excellent and time-tested work in any of the fields of interest ...

New light at the end of the tunnel

October 17, 2011

( -- An international team of scientists successfully concentrated the energy of infrared laser pulses using a nano funnel enabling them to generate extreme ultraviolet light pulses, which repeated 75 million ...

Electron ping pong in the nano-world

April 25, 2011

( -- An international team of researchers succeeded at the Max Planck Institute of Quantum Optics to control and monitor strongly accelerated electrons from nano-spheres with extremely short and intense laser ...

Physicists observe electron ejected from atom for first time

October 12, 2010

Physicists at the University of California, Berkeley in collaboration with researchers from the Max Planck Institute of Quantum Optics and the U.S. Department of Energy's Lawrence Berkeley National Laboratory, became the ...

Scientists track electrons in molecules

June 13, 2010

( -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will facilitate observations ...

Recommended for you

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.