Sought-after magnetic properties in common alloy

November 4, 2011, SLAC National Accelerator Laboratory

In a paper published Nov. 2 in Nature Communications, a team of researchers led by University of Maryland's Ichiro Takeuchi, in collaboration with Stanford Synchrotron Radiation Lightsource's Apurva Mehta, reported the discovery of large magnetostriction in an iron/cobalt alloy — in other words, the alloy shows a mechanical strain when a magnetic field is applied.

This property is sought after in materials with good mechanical properties for microelectromechanical systems (MEMS), sensors and actuators. However, magnetostrictive materials are usually based on rare or difficult-to-obtain materials, so scientists have been looking for alternatives based on common, cheap and widely available elements.

The team was able to enhance the magnetostriction of the alloy by more than a factor of three, and it appears that the mechanism by which they were able to do this can be used to discover even better magnetostriction properties in of common metals. 

Explore further: Superelastic iron alloy could be used for heart and brain surgery

More information: Nature Communications 2, Article number: 518 doi:10.1038/ncomms1529

Related Stories

An impossible alloy now possible

February 26, 2009

What has been impossible has now been shown to be possible - an alloy between two incompatible elements. The findings are being published in this week's edition of Proceedings of the National Academy of Science, USA.

Under pressure, atoms make unlikely alloys

March 11, 2009

(PhysOrg.com) -- Ever since the Bronze Age, humans have experimented with combining different metals to create alloys with properties superior to either metal alone. But not all metals readily form alloys - for some pairs ...

Smart memory foam made smarter

September 24, 2009

Researchers from Northwestern University and Boise State University have figured out how to produce a less expensive shape-shifting "memory" foam, which could lead to more widespread applications of the material, such as ...

Japanese material scientists develop new superelastic alloy

July 1, 2011

(PhysOrg.com) -- Working out of Tokyo University, scientists in the Department of Materials Science, have developed a new metal alloy that unlike other “superelastic” alloys can resume its original shape in temperatures ...

New super strong alloy discovered

September 8, 2010

(PhysOrg.com) -- International team of researchers has discovered a new super-strength light alloy and had their key findings published in Nature Communications.

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.