Making manufacturing ultrapure hydrogen gas easier than ever

September 29, 2011 By Lee Swee Heng
A combined catalyst/carbon dioxide (CO2)-sorbent system (middle) that removes carbon monoxide (CO) contaminants from hydrogen gas (H2) may soon be part of on-board fuel cells. Credit: A*STAR

Pure hydrogen (H2) is an important chemical widely used in the chemical industry, many semiconductor fabrication processes, as well as in Polymer Electrolyte Membrane (PEM) fuel cells. Almost all of the hydrogen (H2) gas generated today comes from the steam reforming of natural gas at oil refineries. However, this process also produces trace amounts of carbon monoxide (CO) byproduct, which limits the application of H2 and can ‘poison’ or destroy the delicate catalysts used in the manufacture of semiconductor and state-of-the-art fuel cells. Researchers led by Ziyi Zhong and Jizhong Luo from the A*STAR Institute of Chemical and Engineering Sciences in Singapore have now developed a material that purifies H2 gas by catalytically converting CO to carbon dioxide (CO2) while simultaneously removing excess CO2—an approach that enables CO removal down to the parts-per-million (ppm) level.

Although several methods exist for H2 purification, the preferential oxidation (PROX) reaction is often favored by fuel cell designers because it can be adapted for use in small, on-board reactors. In the PROX system, a mixture of H2, CO and oxygen gases passes over a metal catalyst located on a ceramic support. This sets off a complex series of oxidation reactions that consume CO, which generates various by-products including CO2.

Currently, gold nanoparticles are garnering attention as PROX catalysts because they are active below 100°C; lower temperatures enable more selective CO oxidation and are safer for vehicle applications. One problem with these catalysts, however, is their inability to lower CO concentrations below 100 ppm. Previous studies have suggested that the reason CO2 gradually deactivates these catalysts is because CO2 binds to the catalyst surface as carbonate.

Removing CO2 from the gas mixture with a solid-state sorbent material is one way to enhance PROX reactions and lower CO concentrations to the single ppm levels needed for H2 fuel cells. However, the challenge faced by Zhong and co-workers was that most common inorganic CO2 sorbents are incompatible with gold nanoparticles—their high working temperatures decrease the effectiveness of CO oxidation and destabilize the tiny metallic particles.

The team chose a novel porous material known as APTES/SBA-15 for their sorbent because it has a robust silica structure and contains amine groups that readily react with free CO2 at low temperatures. Further experiments revealed that APTES/SBA-15 sorbents boosted CO removal by an average 10% over unprotected gold PROX nanocatalysts.

Optimizing the layered arrangement of catalysts and sorbents in the reactor lowered the CO levels in H2 gas from 2000 ppm to 25 ppm. Zhong says that he expects even better performance in the future. “There is still plenty of room for development of better CO2 sorbents and catalysts for this process,” he notes.

Explore further: New reactor paves the way for efficiently producing fuel from sunlight

More information: Ng, J. W., et al. Enhancing preferential oxidation of CO in H2 on Au/α-Fe2O3 catalyst via combination with APTES/SBA-15 CO2-sorbent. International Journal of Hydrogen Energy 35, 12724–12732 (2010).

Related Stories

Image: Carbon dioxide on the rise

June 28, 2010

(PhysOrg.com) -- The SCIAMACHY sensor on ESA?s Envisat satellite has provided scientists with invaluable data on our planet, allowing them to map global air pollution and the distribution of greenhouse gases.

Recommended for you

A new tool for discovering nanoporous materials

May 23, 2017

Materials classified as "nanoporous" have structures (or "frameworks") with pores up to 100 nm in diameter. These include diverse materials used in different fields from gas separation, catalysis, and even medicine (e.g. ...

Making biological drugs with spider silk protein

May 23, 2017

Researchers at Karolinska Institutet in Sweden have managed to synthesise lung surfactant, a drug used in the care of preterm babies, by mimicking the production of spider silk. Animal studies reveal it to be just as effective ...

Taking a closer look at genetic switches in cancer

May 22, 2017

Many things go wrong in cells during the development of cancer. At the heart of the chaos are often genetic switches that control the production of new cells. In a particularly aggressive form of leukemia, called acute myeloid ...

Micro delivery service for fertilizers

May 22, 2017

Plants can absorb nutrients through their leaves as well as their roots. However, foliar fertilization over an extended period is difficult. In the journal Angewandte Chemie, German researchers have now introduced an efficient ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.