Spinning new materials in a thread for fiber-based electronics, photonics devices

May 20, 2011 by David L. Chandler, Massachusetts Institute of Technology
Samples of materials that have been made into fibers in the lab of MIT’s Yoel Fink. The initial material is made into a 'preform,' in the lower portion, which is then heated and drawn out like taffy into a fiber from the top, preserving the arrangement of materials within the structure. Photo: Greg Hren/RLE

Researchers at MIT have succeeded in making a fine thread that functions as a diode, a device at the heart of modern electronics. This feat — made possible by a new approach to a type of fiber manufacturing known as fiber drawing — could open up possibilities for fabricating a wide variety of electronic and photonic devices within composite fibers, using a variety of materials.

Fiber-drawing techniques are used to produce the optical fibers behind much of today’s broadband communications, but these techniques have been limited to materials that can partially melt and stretch like taffy at the temperatures being used for drawing the fibers. The new work demonstrates a way of synthesizing new materials during the fiber-making process, including materials whose melting points are far higher than the temperatures used to process the fibers. The simple proof-of-concept demonstration carried out by the MIT researchers could open the door to a wide array of sophisticated devices based on composite fibers, they say.

The findings, part of a doctoral research project in materials science by Nicholas Orf, have been published in the journal Proceedings of the National Academy of Sciences. The paper was co-authored by Orf (now a postdoc at MIT); John Joannopoulos, the Francis Wright Davis Professor of Physics; Yoel Fink, the Thomas B. King Associate Professor of Materials Science; Marc Baldo, associate professor; Ofer Shapira, a research scientist in the Research Laboratory of Electronics; postdoc Fabien Sorin; and Sylvain Danto, who was a postdoc at the time. The work was carried out in Fink’s research group.

All previous work on fiber-drawing ended up with the same materials that were there to begin with, just in a different shape, Orf says, adding: “In this method, new materials are formed during the drawing process.”

Fiber drawing involves preparing a “preform” of materials, such as a large glass rod resembling an oversized model of the fiber to be produced. This preform is heated until it reaches a taffy-like consistency and then pulled into a thin fiber. The materials comprising the preform remain unchanged as its dimensions are drastically reduced.

In the current research, the preform contained selenium, sulfur, zinc and tin, arranged within a coating of polymer material. The drawing process, carried out at a temperature of just 260 degrees Celsius (500 degrees Fahrenheit), combined these materials to form fibers containing zinc selenide, even though that compound has a melting point of 1,530 degrees Celsius (2,786 degrees Fahrenheit).

The resulting fiber was a simple but functional semiconductor device called a — a sort of one-way valve for electrical current, allowing electrons to flow through it in only one direction. The diode, never before made by such a method, is a basic building block for electrical circuits.

“This shows that many more kinds of materials can be incorporated into fibers than ever before,” Orf says. Because the physical arrangements placed in the preform are preserved in the drawn fiber, it should ultimately be possible to incorporate more complex electronic circuits within the structure of the fiber itself.

Such fibers might find uses as sensors for light, temperature or other environmental conditions, Orf says. Or the fibers could then be woven, such as to make a solar-cell fabric, he says.

Fink says his research group has been working for more than a decade on expanding the kinds of materials and structures that can be incorporated into fibers. He says that despite the rapid progress made in the last few decades in various forms of electronics, “there has been little progress in advancing the overall functionality and sophistication of fibers and fabrics … one of the earliest forms of human expression.”

The group’s research, he says, has stemmed from the basic question, “How sophisticated can a fiber be?” Over the years they have incorporated more and more materials, structures and functions into fibers. But one of the biggest limitations has been the set of materials that could be incorporated into the fibers; this new work has greatly expanded that list. The work shows that it is possible, Fink says, “to use the fiber draw as a way to synthesize . It’s the first time this has been demonstrated anywhere.”

Zinc selenide, the specific compound formed in this drawing process, is an important material for both its electronic and its optical properties, Orf says. Such fibers might have uses in new photonic circuits, which use light beams to perform functions similar to those carried out by flowing electrons in electronic circuits.

While this experiment produced 15 individual diode devices in the fiber, each separate from the others, Fink says that through continuing research, “We think you could probably do hundreds” and even interconnect them to form electronic circuits.

Professor John Ballato, director of the Center for Optical Materials Science and Engineering Technologies at Clemson University, adds, “There has been growing international interest in semiconducting optical fibers over the past few years. Such fibers offer the potential to marry the optoelectronic benefits of semiconductors, [which] we know from the silicon photonics and integrated circuit worlds, with the light guidance and long path lengths of optical .” The new MIT work is particularly significant, he says, because of “the utilization of the fiber as a micro solid-state chemical reactor to realize materials that are not generally amenable to direct fiber fabrication.”

Ballato, who was not involved in this research, adds that a similar technique has been used to produce reactions using gases, but that to the best of his knowledge, “this is the first … to extend this concept to the solid state, where indeed a more bountiful opportunity exists to achieve a wider range of materials.” The process is so flexible and has the potential to be used with such a range of , he says, that “it can be considered an important step to a ‘fiber that does everything’ — creates, propagates, senses and manipulates photons, electrons [and] phonons.”

This story is republished courtesy of MIT News (web.mit.edu/newsoffice/), a popular site that covers news about MIT research, innovation and teaching.

Explore further: 'Flexible camera' replaces lens with fiber web

Related Stories

'Flexible camera' replaces lens with fiber web

July 7, 2009

(PhysOrg.com) -- Imagine a soldier's uniform made of a special fabric that allows him to look in all directions and identify threats that are to his side or even behind him. In work that could turn such science fiction into ...

Fibers that can hear and sing

July 12, 2010

For centuries, "man-made fibers" meant the raw stuff of clothes and ropes; in the information age, it's come to mean the filaments of glass that carry data in communications networks. But to Yoel Fink, an Associate professor ...

New kind of optical fiber developed

February 25, 2011

(PhysOrg.com) -- A team of scientists led by John Badding, a professor of chemistry at Penn State University, has developed the very first optical fiber made with a core of zinc selenide -- a light-yellow compound that can ...

New fibers and membranes for high-tech products

November 22, 2010

Nothing escapes the attention of research and development scientists, and now is the turn of industrial garments and household textiles! Manufacturers can now take advantage of new raw materials, fibers and membranes, not ...

'Nanostitching' could strengthen airplane skins, more

March 4, 2009

MIT engineers are using carbon nanotubes only billionths of a meter thick to stitch together aerospace materials in work that could make airplane skins and other products some 10 times stronger at a nominal increase in cost.

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 20, 2011
not rated yet May 21, 2011

Why? Its a good bit of research with some good potential.
not rated yet May 21, 2011

Why? Its a good bit of research with some good potential.

I know, I commented on it previously, but apparently the comment was removed.

The site administrator must not have taken my extrapolation of this technology very seriously.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.