Biogeochemistry at the core of global environmental solutions

February 9, 2011, Cary Institute of Ecosystem Studies
Many human-caused environmental problems have their origins in the release of waste products. These waste products may not be toxic on their own, but interact with other biogeochemical cycles and cause serious global and regional problems. Credit: Beth Tenser

If society wants to address big picture environmental problems, like global climate change, acid rain, and coastal dead zones, we need to pay closer attention to the Earth's coupled biogeochemical cycles. So reports a special issue of Frontiers in Ecology and the Environment, published this month by the Ecological Society of America.

"There are nearly seven billion people on the planet. And our activities are throwing the Earth's biogeochemical cycles out of sync, to the detriment of air and water resources, climate stability, and human health," comments Dr. Jonathan J. Cole, a limnologist at the Cary Institute of Ecosystem Studies and co-editor of the special issue.

A biogeochemical cycle is a pathway by which a chemical element, such as carbon, moves through Earth's biosphere, atmosphere, hydrosphere, and lithosphere. Some thirty cycles govern the composition of our environment, among them carbon, nitrogen, oxygen, and phosphorus.

Historically, biogeochemical cycles have been studied individually. But in the natural world, element cycles are intimately tied to one another, and seemingly small perturbations can have large impacts across cycles.

The Frontiers issue puts forth a new framework for understanding the biological, geological, and chemical processes that shape element cycles, and the ways in which they are coupled to one another.

It represents one of the first efforts to convene atmospheric scientists and ecologists on the topic. In addition to Cole, it was edited by Drs. Adrien C. Finzi of Boston University and Elisabeth A. Holland of the National Center for Atmospheric Research.

In the pursuit of food and fuel, humans are disrupting Earth’s biogeochemical cycles. Credit:

Dr. William H. Schlesinger, president of the Cary Institute and a contributor, notes, "The coupled framework not only explains the causes of many of today's leading environmental problems, it provides a road map for finding solutions at the global scale."

Consider the connection between farms and fish. In the U.S., two-thirds of our estuaries are degraded by nitrogen and phosphorus pollution, which is often a by-product of agriculture. Livestock waste and crop fertilizer make their way into coastal waterways, where they stimulate algal blooms that strip oxygen from deep waters, degrade sensitive habitat, and ultimately kill fish.

A better understanding of how nitrogen, phosphorus, and oxygen cycles interact could help balance agricultural needs with the health and productivity of estuaries.

Coupled-cycles can also strengthen our ability to predict and manage climate change. Forests play a role in removing carbon dioxide from the atmosphere. A forest's ability to sequester atmospheric carbon—an attribute that helps minimize climate change—is tied to nitrogen, phosphorus, and water availability. Yet current global climate models don't incorporate these couplings in realistic ways.

An integrated view could provide a more accurate view of forest carbon sequestration limits, while helping to guide sustainable forestry practices.

Dr. Finzi concludes, "We are at a turning point. From satellite imagery to real-time environmental monitoring, we have the technology needed to reveal how coupled biogeochemical cycles shape the world and how our actions disrupt them. Now we need to focus on integrating data across observational and experimental networks and applying insights to management decisions."

Explore further: Earth's biogeochemical cycles, once in concert, falling out of sync

More information:

Related Stories

Earth's life support systems discussed

February 2, 2011

In the search for life on Mars or any planet, there is much more than the presence of carbon and oxygen to consider. Using Earth's biogeochemical cycles as a reference point, elements like nitrogen, iron and sulfur are just ...

Nutrient Pollution Chokes Marine and Freshwater Ecosystems

February 19, 2009

Protecting drinking water and preventing harmful coastal "dead zones", as well as eutrophication in many lakes, will require reducing both nitrogen and phosphorus pollution. Because streams and rivers are conduits to the ...

Mangroves importance and decline studied

February 27, 2006

Scientists say mangroves, the backbone of tropical ocean coastlines, are far more important to the global ocean's biosphere than previously thought.

Researchers explain nitrogen paradox in forests

June 18, 2008

Nitrogen is essential to all life on Earth, and the processes by which it cycles through the environment may determine how ecosystems respond to global warming. But certain aspects of the nitrogen cycle in temperate and tropical ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.