Your vital signs, on camera

October 4, 2010 by David L. Chandler, MIT News
MIT Media Lab student Daniel McDuff, who collaborated on the pulse-monitoring system, demonstrates a version of the device built into a mirror that displays his pulse rate in real-time at the bottom. Image: Melanie Gonic

You can check a person’s vital signs -- pulse, respiration and blood pressure -- manually or by attaching sensors to the body. But a student in the Harvard-MIT Health Sciences and Technology program is working on a system that could measure these health indicators just by putting a person in front of a low-cost camera such as a laptop computer’s built-in webcam.

So far, graduate student Ming-Zher Poh has demonstrated that the system can indeed extract accurate pulse measurements from ordinary low-resolution webcam imagery. Now he’s working on extending the capabilities so it can measure respiration and blood-oxygen levels. He hopes eventually to be able to monitor blood pressure as well. Initial results of his work, carried out with the help of Media Lab student Daniel McDuff and Professor of Media Arts and Sciences Rosalind Picard, were published earlier this year in the journal .

Poh suggests that such noninvasive monitoring could prove useful for situations where attaching sensors to the body would be difficult or uncomfortable, such as for monitoring burn victims or newborns. It could also be used for initial telemedicine screening tests over the Internet using a patient’s own webcam or even cell-phone camera.

Such a system could also be built into a bathroom mirror so that patients who need ongoing monitoring, or just people who want to keep track of their own health, could get pulse, respiration, oxygen saturation and blood-pressure readings routinely while they brush their teeth or wash up, displayed in a corner of the .

Measuring brightness

The system measures slight variations in brightness produced by the flow of blood through blood vessels in the face. Public-domain software is used to identify the position of the face in the image, and then the digital information from this area is broken down into the separate red, green and blue portions of the video image. In tests, the pulse data derived from this setup were compared with the pulse determined by a commercially available FDA-approved blood-volume pulse sensor.

The big challenge was dealing with movements of the subject and variations in the ambient lighting. But Poh was able to adapt signal-processing techniques originally developed to extract a single voice from a roomful of conversations, a method called Independent Component Analysis, in order to extract the pulse signal from the “noise” of these other variations.

The system produced pulse rates that agreed to within about three beats per minute with the rates obtained from the approved monitoring device, and was able to obtain valid results even when the subject was moving a bit in front of the camera. In addition, the system was able to get accurate pulse signals from three people in the camera’s view at the same time.

Graduate student Ming-Zher Poh discusses a system he designed that could measure vital signs just by having a person sit in front of a low-cost camera such as a laptop computer's built-in webcam. Video: Melanie Gonick

The concept of using a camera to detect such health information is not entirely new, but the innovations that allow the use of such low-cost camera equipment is. Fokko Wieringa, senior scientist at TNO Science & Industry in the Netherlands, published a paper describing a photographic pulse-detection system in 2005, but he says “the exciting thing about this new method is that they identify a fixed region on the face and track it (thus improving motion artifact tolerance), plus the clever processing method. The achieved gain in signal quality allows them to use a simple and cheap camera, even on moderately moving persons.” The ability to monitor multiple people at once is also new, he says. “These combined features are very original.”

The project won third place and a prize of $50,000 in June in the second annual Primary Healthcare competition run by CIMIT (Center for Integration of Medicine and Innovative Technology), an organization created by a group of physicians at Boston-area hospitals in collaboration with mechanical engineering faculty at MIT in order to develop new devices to meet clinical needs. The competition is open to teams of graduate or undergraduate students in engineering from anywhere in the U.S.

Poh continues to work on developing the capability to get blood pressure and blood-oxygen measurements from the same video images. Extracting such data from optical imagery should work, he says, since conventional blood oxygen sensors already work by using optical detection, although they use a dedicated light source rather than ambient lighting.

“It’s not going to be easy,” he says of the next steps. “But it theoretically should be possible.”

Wieringa, who was not involved in this work, says, “There are many pitfalls in the road from idea to approved medical device, and even more once a device is used in practice. However, the results achieved now look quite encouraging. To be honest, my hands are itching to exchange ideas and cooperate with these young researchers; it's exciting stuff.”

This story is republished courtesy of MIT News (, a popular site that covers news about MIT research, innovation and teaching.

Explore further: Wearable blood pressure sensor offers 24/7 continuous monitoring

Related Stories

Are we getting enough vitamin D?

October 4, 2010

Researchers at the Queensland Institute of Medical Research (QIMR) are on a mission to find out if we need to supplement our diet with vitamin D.

Scientists discover new hemoglobin type

March 17, 2008

Scientists at the University of Bonn have discovered a new rare type of haemo-globin. Haemoglobin transports oxygen in the red blood corpuscles. When bound to oxygen it changes colour. The new haemoglobin type appears optically ...

Recommended for you

New method analyzes corn kernel characteristics

November 17, 2017

An ear of corn averages about 800 kernels. A traditional field method to estimate the number of kernels on the ear is to manually count the number of rows and multiply by the number of kernels in one length of the ear. With ...

Optically tunable microwave antennas for 5G applications

November 16, 2017

Multiband tunable antennas are a critical part of many communication and radar systems. New research by engineers at the University of Bristol has shown significant advances in antennas by using optically induced plasmas ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Oct 04, 2010
How can heartbeat be deduced from the image of a face?, are there tell-tale fluctuations on the face?

not rated yet Oct 05, 2010
Sounds good, even if it is not an approved medical device, it would be good for gyms and even as software on your home computer.
not rated yet Oct 05, 2010
How can heartbeat be deduced from the image of a face?, are there tell-tale fluctuations on the face?

Directly from the article, "The system measures slight variations in brightness produced by the flow of blood through blood vessels in the face"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.