Cobalt-controlled communication: Fine performance tuning of organometallic molecular wire

September 6, 2010, Wiley

Cobalt-Controlled Communication Fine Performance Tuning of an Organometallic Molecular Wire by Added Dicobalt Fragments
(PhysOrg.com) -- Smaller and smarter: this is the aim of research in the quest for ever faster electronic devices smaller in size but capable of performing more complicated tasks. Devices consisting of the smallest possible components, molecular parts, have emerged as the answer.

Molecular wires, the most basic components of molecular , need to be accurately adjusted for optimal performance. Y. Tanaka, T. Koike, and M. Akita of the Chemical Resources Laboratory, Tokyo Institute of Technology, reveal the key factor for tuning wire-like performance in the Short Communication published in the European Journal of Inorganic Chemistry.

The factors affecting the communication performance of molecular devices are important for the development of . Parts of molecular electronic circuits (wires, switches, resistors, diodes, etc.) must have adjustable electronic properties to optimize this communication.

Akita et al. prepared a molecular wire containing a C≡C moiety between two iron centers. The communication between the iron centers was modified by coordination of a dicobalt cluster to the C≡C part of the wire. Fine tuning was achieved by attaching, removing, or replacing the ligands on the added cobalt system as needed, which changed the electronic properties of the Co atoms with respect to those of the Fe atoms, thus controlling the transfer of electrons between the iron centers over a path through the cobalt atoms. In contrast to the direct Fe-Fe transition mechanism for the diiron wire, the communication mechanism of the dicobalt adducts involved indirect Fe-Co-Fe electron transfer.

The mixed-valence characteristics of the compounds were studied by electrochemical and spectroscopic methods. The diiron compound belongs to Robin-Day Class III, and the dicobalt adducts have properties that place them between Class IIA and IIB. All molecular wires reported in this paper can be interconverted easily in a reversible manner.

The most important contribution of this study to the understanding of fine tuning of molecular devices is the key role played by the donor properties of the ligands attached to the cobalt fragments on the path between the two communicating iron centers. It was demonstrated that the properties of electron transfer through the could be adjusted by tailoring the of these ligands.

Explore further: Single polymer chains as molecular wires

More information: Munetaka Akita, et al. Reversible, Fine Performance Tuning of an Organometallic Molecular Wire by Additi on, Ligand Replacement and Removal of Dicobalt Fragments, European Journal of Inorganic Chemistry , 2010, No. 23, 3571-3575, dx.doi.org/10.1002/ejic.201000661

Related Stories

Single polymer chains as molecular wires

February 27, 2009

The research team of Leonhard Grill at Freie Universität Berlin - in collaboration with the synthetic chemistry group of Stefan Hecht from Humboldt University of Berlin and the theoretical physics group of Christian ...

Modeling How Electric Charges Move

March 13, 2008

Learning how to control the movement of electrons on the molecular and nanometer scales could help scientists devise small-scale circuits for many applications, including more efficient ways of storing and using solar energy. ...

DNA-based molecular nano-wires

July 20, 2005

An international consortium of 7 universities and research centres are seeking an alternative to silicon-based microelectronics in using molecules of DNA, which could enable a reduction in size of the current systems by a ...

Highlight: Nanopatterning of Graphene

March 11, 2010

Center for Nanoscale Materials (CNM) at Argonne National Laboratory users from Politecnico di Milano in Italy, working collaboratively with researchers in the Electronic & Magnetic Materials & Devices Group, have demonstrated ...

Scientists discover magnetic superatoms

June 15, 2009

A team of Virginia Commonwealth University scientists has discovered a 'magnetic superatom' - a stable cluster of atoms that can mimic different elements of the periodic table - that one day may be used to create molecular ...

Recommended for you

Engineers repurpose wasp venom as an antibiotic drug

December 7, 2018

The venom of insects such as wasps and bees is full of compounds that can kill bacteria. Unfortunately, many of these compounds are also toxic for humans, making it impossible to use them as antibiotic drugs.

Researchers probe hydrogen bonds using new technique

December 7, 2018

Researchers at Carnegie Mellon University have used nuclear resonance vibrational spectroscopy to probe the hydrogen bonds that modulate the chemical reactivity of enzymes, catalysts and biomimetic complexes. The technique ...

Are amorphous solids elastic or plastic?

December 7, 2018

In a crystalline solid, the atoms form an ordered lattice. Crystalline solids respond elastically to small deformations: When the applied strain is removed, the macroscopic stress, as well as the microscopic configuration ...

Molecular insights into spider silk

December 7, 2018

Spider silk is one of the toughest fibres in nature and has astounding properties. Scientists from the University of Würzburg discovered new molecular details of self-assembly of a spider silk fibre protein.

Copycat cells command new powers of communication

December 7, 2018

From kryptonite for Superman to plant toxins for poison ivy, chemical reactions within the body's cells can be transformative. And, when it comes to transmuting cells, UC San Diego researchers are becoming superhero-like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.