Robots get an artificial skin

July 1, 2010
Pressure sensitive flooring detects people and slows or stops the robot’s movement. (© Fraunhofer)

Robots are breaking barriers: Long banished behind steel barriers, they are entering new fields of application such as the manufacturing, household and healthcare sectors. The requisite safety can be provided by a tactile sensor system, which can be integrated in a floor or applied directly to robots as an artificial skin.

A carefully transports a sample through a biotech lab where it is surrounded by the routine hustle and bustle. Lab technicians are conversing with one another and performing tests. One technician inadvertently runs into the robot, which stops moving immediately.

An covering the robot makes this possible. Consisting of conductive foam, textiles and an intelligent evaluation circuit, the sensor system detects points of contact and differentiates between gentle and strong contact. It registers people immediately. The shape and size of the sensor cells implemented in the skin can be varied depending on the application. They detect any contact. The higher the number of sensor cells, the more precisely a point of collision can be detected. A sensor controller processes the measured values and transmits them to the robot or, alternatively, a computer, a machine or production line.

Researchers at the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg designed and patented this sensor system in 2008 for its assistant robot LiSA, which stocks incubators and measuring instruments in biotech labs with sample cups and relieves lab staff from such work. Since then the engineers have refined the sensor system for a wide array of applications such as and flooring. Contact with humans or objects will be reliably detectable in the future, a basic prerequisite for the implementation of robots in human environments without protective barriers.

"Our artificial skin can be adapted to any , including curved or very flat. We use large-area floor sensors to define safety zones that people may not enter", says Markus Fritzsche, researcher at the Fraunhofer IFF. "These areas can be changed dynamically." The tactile skin now also functions as an input medium, for instance, to guide robots by translating contact into motion. "This requires little force. If I touch the robot, it attempts to evade the pressure. Thus, I can direct even a 200 kilogram robot in the desired direction", says Fritzsche describing the system’s advantages. Another of the artificial skin’s distinctive features is the integrated damping elements that additionally diminish any collisions by cushioning impacts.

Diverse variants of the tactile sensor system now exist, the shell material ranging from breathable to waterproof. "This opens entirely new fields of application such as medical engineering or manufacturing", says Fritzsche. "Pressure sensitive flooring is ideal for monitoring workspaces in factories or instantly registering fallen patients in a nursing home for instance. Robots and mobile equipment outfitted with the artificial skin register any collision and brake immediately. In addition, we can provide grippers a sense of touch and thus detect whether they are actually gripping something."

Numerous variants of the artificial skin have been prototyped. Fritzsche is convinced: "We’ll encounter all sorts of forms of artificial skin in everyday life in the near future."

Explore further: Underwater robot with a sense of touch

Related Stories

Underwater robot with a sense of touch

May 4, 2009

(PhysOrg.com) -- Maintenance of offshore drilling rigs or underwater cables, taking samples of sediment - underwater robots perform a variety of deep-sea tasks. Research scientists now aim to equip robots with tactile capability ...

Care-O-bot 3: Always at your service

July 1, 2008

Who doesn’t long for household help at times? Service robots will soon be able to relieve us of heavy, dirty, monotonous or irksome tasks. Research scientists have now presented a new generation of household robots, the ...

Researchers unveil whiskered robot rat

June 30, 2009

A team of scientists have developed an innovative robot rat which can seek out and identify objects using its whiskers. The SCRATCHbot robot will be demonstrated this week at an international workshop looking at how robots ...

Production line for artificial skin

December 9, 2008

Some patients wish they had a second skin – for instance because their own skin has been burnt in a severe accident. But transplanting skin is a painstaking task, and a transplant that has to cover large areas often requires ...

Swimming pool game inspires robot detection

March 18, 2009

Scientists have used a popular kids swimming pool game to guide their development of a system for controlling moving robots that can autonomously detect and capture other moving targets.

Recommended for you

Desktop scanners can be hijacked to perpetrate cyberattacks

March 28, 2017

A typical office scanner can be infiltrated and a company's network compromised using different light sources, according to a new paper by researchers from Ben-Gurion University of the Negev and the Weizmann Institute of ...

Self-driving car crash comes amid debate about regulations

March 28, 2017

A crash that caused an Uber self-driving SUV to flip onto its side in a Phoenix suburb serves as a stark reminder of the challenges surrounding autonomous vehicles in Arizona, a state that has gone all-in to entice the company ...

Renewable energy has robust future in much of Africa: study

March 27, 2017

As Africa gears up for a tripling of electricity demand by 2030, a new Berkeley study maps out a viable strategy for developing wind and solar power while simultaneously reducing the continent's reliance on fossil fuels and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.