Self-powered sensors

February 11, 2010 by David L. Chandler, Massachusetts Institute of Technology

It can be inconvenient to replace batteries in devices that need to work over long periods of time. Doctors might have to get beneath a patient’s skin to replace batteries for implanted biomedical monitoring or treatment systems. Batteries used in devices that monitor machinery, infrastructure or industrial installations may be crammed into hard-to-reach nooks or distributed over wide areas that are often difficult to access.

But new technology being developed by MIT researchers could make such replacements unnecessary.

Soon, such devices could be powered just by differences in temperature between the body (or another warm object) and the surrounding air, eliminating or reducing the need for a battery. They would use new energy-scavenging systems being developed by Anantha Chandrakasan, MIT’s Joseph F. and Nancy P. Keithley Professor of Electrical Engineering and director of the MIT Microsystems Technology Laboratories, and Yogesh Ramadass SM ’06, PhD ’09.

This is the first of a two-part series about MIT research on harnessing micro-sources of power. (part two can be read here)
Such a system, for example, could enable 24-hour-a-day monitoring of heart rate, blood sugar or other biomedical data, through a simple device worn on a patient’s arm or a leg and powered by the body’s temperature (which, except on a 98.6-degree F summer day, would always be different from the surrounding air). A similarly powered system could monitor the warm exhaust gases in the flues of a chemical plant, or air quality in the ducts of a heating and ventilation system.

The concept of harvesting from differences in temperature is nothing new. Many technologies for doing so have been developed, including devices NASA has used to power probes sent into deep space (the probes harvest heat from radioactive plutonium). Certain , by their nature, will produce a flow of electrical current when one side is hotter than the other — or, conversely, will produce a difference in temperature when a current is run through them. Such materials are already used for solid-state coolers and heaters for food or beverages.

The principle was discovered in the 19th century, but only in recent years has it been seriously explored as an energy source. In thermoelectric materials, as soon as there is a temperature difference, heat begins to flow from the hotter to the cooler side. In the process, at the atomic scale this heat flow propels charge carriers (known as electrons or electron holes) to migrate in the same direction, producing an electric current — and a voltage difference between the two sides.

The key to making this principle practical for low-powered devices is to harness as much as possible of the available energy. Chandrakasan and Ramadass have been working to get as close as possible to the theoretical limits of efficiency in tapping this heat energy.

The higher the temperature difference, the greater the potential for producing power, and most such power-generating devices are designed to exploit differences of tens to hundreds of degrees C. The unique aspect of the new MIT-developed devices is their ability to harness differences of just one or two degrees, producing tiny (about 100 microwatts) but nevertheless usable amounts of electric power. The key to the new technology is a control circuit that optimizes the match between the energy output from the thermoelectric material and the storage system connected to it, in this case a storage capacitor. The findings were presented this week at the International Solid State Circuits Conference in San Francisco.

Because thermoelectric systems rely on a difference in temperature between one side of the device and the other, they are not usable for implanted medical devices, where they would be in a uniform-temperature environment. The present experimental versions of the device require a metal heat-sink worn on an arm or leg, exposed to the ambient air. “There’s work to be done on miniaturizing the whole system,” Ramadass says. This might be accomplished by combining and simplifying the electronics and by improving airflow over the heat sink.

Ramadass says that as a result of research over the last decade, the power consumption of various electronic sensors, processors and communications devices has been greatly reduced, making it possible to power such devices from very low-power energy harvesting systems such as this wearable thermoelectric system.

David Lamb, chief operating officer of Camgian Microsystems, a company that produces a variety of low-power, lightweight semiconductor chips, says that “we believe the wireless sensor products we are developing will all migrate to energy harvesting, as we push their size, weight and power down.” He adds that the research of Chandrakasan and Ramadass “is in the critical path of technologies required by companies such as Camgian that are developing next-generation microsystems.”

Devices to use this power would in most cases still need some energy storage system, so that the constant slow trickle of energy could be accumulated and used in short bursts, for example to operate a transmitter to send data readings back to a receiver. Different ways of storing the energy are possible, such as the use of ultracapacitors, Ramadass says. “These will play a critical role, in order to build a complete energy harvesting system,” he says.

After years of work on these highly efficient energy-scavenging devices, currently funded by a seed grant from the MIT Energy Initiative, Chandrakasan says, “the time has come to find the real applications and realize the vision.”

Explore further: Physicist addresses international forum on thermoelectric energy

More information: This is the first of a two-part series about MIT research on harnessing micro-sources of power. (part two can be read here)

Related Stories

Energy-autonomous sensors for aircraft

October 1, 2009

Aircraft maintenance will be easier in future, with sensors monitoring the aircraft skin. If they discover any dents or cracks they will send a radio message to a monitoring unit. The energy needed for this will be obtained ...

Promising new material that could improve gas mileage

October 9, 2008

With gasoline at high prices, it's disheartening to know that up to three-quarters of the potential energy you are paying for is wasted. A good deal of it goes right out the tailpipe instead of powering your car.

Wireless EEG system self-powered by body heat and light

April 9, 2008

In the framework of Holst Centre, IMEC has developed a battery-free wireless 2-channel EEG (electroencephalography or monitoring of brain waves) system powered by a hybrid power supply using body heat and ambient light. The ...

A traveling-wave engine to power deep space travel

September 17, 2004

A University of California scientist working at Los Alamos National Laboratory and researchers from Northrop Grumman Space Technology have developed a novel method for generating electrical power for deep-space travel using ...

Recommended for you

Cryptocurrency rivals snap at Bitcoin's heels

January 14, 2018

Bitcoin may be the most famous cryptocurrency but, despite a dizzying rise, it's not the most lucrative one and far from alone in a universe that counts 1,400 rivals, and counting.

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Feb 11, 2010
Great. Power our devices and put our overweight sweating population to work. I say make the systems draw more energy and just store it in batteries. Maybe that will help some people drop the pounds.
not rated yet Feb 15, 2010
Just the thing to power these:

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.