Zebrafish behavior monitoring system could boost drug discovery (w/ Video)

January 19, 2010

Researchers from the University of British Columbia and Harvard University have co-developed a system that captures on video and barcodes the behavioral responses of zebrafish to chemical compounds on a large scale. The approach could dramatically speed up the discovery of new psychiatric drugs.

The discovery in the 1950s of drugs that act in the nervous system has been important both for the understanding of neurobiology and the treatment of . Since then, very few new drugs have been developed.

The new system, detailed in today's edition of Nature Chemical Biology, was developed by UBC statisticians Jennifer Bryan and Rick White and Harvard's Randall Peterson and David Kokel. It can track the behavioral effects of up to 14,000 chemicals at a time and has already identified new chemicals that affect behaviour in fish.

The video will load shortly.
Movie of the PMR in zebrafish embryos in a petri dish at low magnification.

"The capacity of this approach is quite distinctive," says Bryan, an associate professor in the Department of Statistics and the Michael Smith Laboratories. "Most pharmacological studies of behaviour have been relatively small scale, involving a few small molecules at most."

"New represent new windows into how the brain works," says Randall Peterson of Harvard. "We hope that behavioral screens with will lead to many new compounds that help us understand and ultimately treat nervous system disorders."

Zebrafish models have increasingly been used to assess drug toxicity and safety, largely because they are transparent, genetically tractable, and have organ systems that are very similar to those of humans. Zebrafish embryos are permeable to drugs.

The video will load shortly.
Movie of the PMR behavior at 30 hpf, showing that animals do not normally respond to a second pulse of light.

Capable of screening approximately 5,000 zebrafish embryos per day, the new platform monitors the motion of embryos in response to two strong light pulses after exposure to chemicals, and compares that to untreated, controls. In total, the study evaluated the behavioral effects of compounds on more than a quarter million .

"The UBC team was able to help devise ways to turn these behavioral observations into more manageable barcodes that capture how the behavior in a treated group differs from that in an untreated, control," says Bryan, co-author of the study. "This makes it possible to generate visualizations of the massive screening datasets generated by this powerful tool, and to group compounds based on the similarity of their associated barcodes."

The new tool may also make it possible to generate genetic models of disorders and screen for chemical modifiers of the associated behavioral defects.

Explore further: Microbiotic technology developed for microinjection of zebrafish embryos

More information: doi:10.1038/nchembio.307

Related Stories

Nanoparticle shows promise in reducing radiation side effects

November 8, 2006

With the help of tiny, transparent zebrafish embryos, researchers at the Kimmel Cancer Center at Thomas Jefferson University and Jefferson Medical College are hoping to prove that a microscopic nanoparticle can be part of ...

Zebrafish: It's not your parents' lab rat

July 30, 2007

Zebrafish cost about a dollar at the pet store. They grow from eggs to hunting their own food in three days. Adults can lay up to 500 eggs at once… and you have more in common with them than you think.

Recommended for you

Researchers report new technique for de-icing surfaces

September 21, 2017

Scientists and engineers have been waging a quiet but determined battle against the build-up of ice on infrastructure. A thin coating of ice on solar panels can wreak havoc with their ability to generate electricity. Thin ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.