Carnegie donates landmark clones to biology

August 6, 2009

With the information explosion, it's remarkable that so little is known about the interactions that proteins have with each other and the protective membrane that surrounds a cell. These interactive, so-called membrane proteins regulate nutrients and water fluxes, sense environmental threats, and are the communications interface with neighboring cells and within the cell.

Now with National Science Foundation funding, researchers at the Carnegie Institution's Department of have cloned genes to produce that may initiate the instructions for genes to turn on in the nucleus. They just donated 2010 of the clones for genes that function in the cell's interaction with its environment to the Arabidopsis Biological Resource Center (ABRC is at Ohio State University) for other scientists to use to help advance fields from medicine to farming. These genes are now used to unravel the interaction of the membrane proteins amongst each other.

Recent research at the Carnegie department has shown that cells across different species use the same mechanism at the to regulate the uptake of the vital nutrient nitrogen. Previous Carnegie work indicated that plants have a novel regulatory mechanism that controls nutrient uptake—neighboring pore-like structures at a plant cell's surface physically interact to control the uptake. "Since plants, animals, bacteria, and fungi all share similar genes for this activity, we wanted to see in this study if same feature could occur across species," remarked Dominique Loqué lead author of a study published in the July 6, Journal of Biological Chemistry.

In the previous work, the scientists looked at the end of the protein Arabidopsis ammonium transporter (AMT1;1). This protein portion is called the C-terminus and it regulates the interactions of the pore-like structures at the membrane surface in plants. In this study they focused on the underlying mechanism of the pore activity by using mutant proteins that cannot shut the pores off with their C-terminus to see how they work in yeast and immature eggs of the frog Xenopus in the presence of ammonium.

The researchers were totally surprised that the mechanism in which three subunits regulate each other was found in the primitive archaebacteria. It means that it evolved billions of years ago. The fact that the C-terminus is found in all other bacteria, , and plants demonstrates that it was necessary in the atmosphere where they developed—periods in which the toxic ammonium accumulated on the early Earth. This mechanism has been retained although a single mutation can make the transporters work independently. So why did this simpler mutation not succeed? The researchers believe that there must still be selective pressure on the system. The simplest explanation is that the mechanism is still necessary today, probably to control uptake and prevent toxicity.

"The newly donated 2010 clones will now be used to see how common such regulation by neighbors is. It also emphasizes the importance and the potential that the new clones have for understanding a spectrum of problems from kidney diseases to engineering better crops," remarked director of the department Wolf Frommer.

Source: Carnegie Institution

Explore further: New gene that helps plants beat the heat

Related Stories

New gene that helps plants beat the heat

October 7, 2008

Michigan State University plant scientists have discovered another piece of the genetic puzzle that controls how plants respond to high temperatures. That may allow plant breeders to create new varieties of crops that flourish ...

Scientists unveil mechanism for 'up and down' in plants

October 28, 2008

VIB researchers at Ghent University, Belgium, discovered how the transport of an important plant hormone is organized in a way that the plant knows in which direction its roots and leaves have to grow. They discovered how ...

How plants learned to respond to changing environments

July 12, 2007

A team of John Innes centre scientists lead by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their ...

Plant steroids offer new paradigm for how hormones work

July 24, 2008

Steroids bulk up plants just as they do human athletes, but the playbook of molecular signals that tell the genes to boost growth and development in plant cells is far more complicated than in human and animal cells. A new ...

Recommended for you

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.