Scientists unveil mechanism for 'up and down' in plants

October 28, 2008

VIB researchers at Ghent University, Belgium, discovered how the transport of an important plant hormone is organized in a way that the plant knows in which direction its roots and leaves have to grow. They discovered how the needed transport protein turns up at the underside of plant cells. The discovery helps us to understand how plants grow, and how they organize themselves in order to grow. The scientific journal Nature published the news in advance on its Web site.

It is known for a long time that the plant hormone auxin is transmitted from the top to the bottom of a plant, and that the local concentration of auxin is important for the growth direction of stems, the growth of roots, the sprouting of shoots. To name a few things; auxin is also relevant to, for instance, the ripening of fruit, the clinging of climbers and a series of other processes. Thousands of researchers try to understand the different roles of auxin.

In many instances the distribution of auxin in the plant plays a key role, and thus the transport from cell to cell. At the bottom of plant cells, so-called PIN proteins are located on the cell membrane, helping auxin to flow through to the lower cell. However, no one thoroughly understood why the PIN proteins only showed up at the bottom of a cell.

An international group of scientists from labs in five countries, headed by Jirí Friml of the VIB-department Plant Systems Biology at Ghent University, revealed a rather unusual mechanism. PIN proteins are made in the protein factories of the cell and are transported all over the cell membrane. Subsequently they are engulfed by the cell membrane, a process called endocytosis. The invagination closes to a vesicle, disconnects and moves back into the cell. Thus the PIN proteins are recycled and subsequently transported to the bottom of the cell, where they are again incorporated in the cell membrane. It is unclear why plants use such a complex mechanism, but a plausible explanation is this mechanism enables a quick reaction when plant cells feel a change of direction of gravity, giving them a new 'underside'.

To see the path of the protein, the researchers used gene technology to make cells in which the PIN protein was linked to fluorescent proteins. (This technology was rewarded with the Nobel Prize 2008 for chemistry.) Subsequently they produced cells in which the endocytosis was disrupted in two different ways. The PIN proteins showed up all over the cell membrane. When the researchers proceeded from single cells to plant embryos, the embryos developed deformations, because the pattern of auxin concentrations in the embryo was distorted. When these plants with disrupted endocytosis grew further, roots developed where the first leaflet should have been.

Source: VIB (the Flanders Institute for Biotechnology)

Explore further: How CRABS CLAW represses TORNADO 2 in plant development

Related Stories

How CRABS CLAW represses TORNADO 2 in plant development

October 25, 2017

Many staple foods such as grains and fruits derive from flowering plants. Flowers are formed from groups of dividing stem cells at the ends of shoots, and the division of these cells stops at a particular stage of development ...

Hormone causes dividing plant cell to rebel

March 28, 2014

Cell division in plants is governed by a physical law. A law that was postulated in the 19th century and tested in a two-dimensional plane many times after that. In an article published in the top journal Developmental Cell ...

A better dye job for roots—in plants

June 1, 2017

Once we start coloring our hair, we may be surprised to learn that we begin to have a problem in common with plant biologists: finding the right dye for our roots. In the case of the biologists, just the right chemical is ...

Herbicide may affect plants thought to be resistant

November 22, 2011

Purdue University researchers have discovered a fine-tuning mechanism involved in plant root growth that has them questioning whether a popular herbicide may have unintended consequences, causing some plants to need more ...

Recommended for you

Hydraulic fracturing negatively impacts infant health

December 13, 2017

From North Dakota to Ohio to Pennsylvania, hydraulic fracturing, also known as fracking, has transformed small towns into energy powerhouses. While some see the new energy boom as benefiting the local economy and decreasing ...

East Antarctic Ice Sheet has history of instability

December 13, 2017

The East Antarctic Ice Sheet locks away enough water to raise sea level an estimated 53 meters (174 feet), more than any other ice sheet on the planet. It's also thought to be among the most stable, not gaining or losing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.