SPEAR3 Accelerator Approved for 500mA

June 2, 2006
The SPEAR3 beamline. Image courtesy of Peter Ginter
The SPEAR3 beamline. Image courtesy of Peter Ginter.

This spring the Department of Energy gave SPEAR3 license to run the accelerator at 500 milliamperes (mA), the current the accelerator was designed to use. Since it opened in January 2004, the machine has operated at 100 mA while beamlines were rebuilt with increased radiation shielding and optical components were upgraded to handle the increased beam power.

The fivefold increase in current translates into more photons shining on experimental samples, which will be especially helpful for protein crystallography studies.

Half an ampere (500 mA) may not sound like much compared to typical household currents rated at 15 to 30 A, but it’s the current multiplied by the voltage drop in an electrical circuit that determines how much power is produced. Each electron circulating in SPEAR3 loses more than a million volts on every turn around the ring. At 500 mA, the power radiated from the beam is close to 550 kW, the equivalent of 5,500 bright light bulbs.

"The challenge is to build vacuum chamber and beamline components that can take high power density," said Bob Hettel, head of the SSRL Accelerator Systems Department. "Most existing light sources operating near 3 GeV (billion electron volts) use no more than 300 mA, and usually much less. Building on experience gained from the B-Factory design, SPEAR 3 was the first 3-GeV light source designed for higher current, a trend that is now being followed in designs for new machines operating at that energy."

The machine has run at 500 mA several times already, with special permission from the DOE, to test the newly designed equipment and increased shielding. By the end of the 2006 summer shutdown, all beamlines except two will be capable of handling 500 mA. Beamline three has been decommissioned, and beamline four will be upgraded during the summer of 2007.

Initial testing has shown that the accelerator can maintain a stable beam at 500 mA. However, during the 2006-2007 run, SPEAR3 will operate at elevated current only a fraction of the time, with any beamlines not capable of 500 mA closed during those times.

Source: Stanford Linear Accelerator Center, by Heather Rock Woods

Explore further: Momentum braking in deep space

Related Stories

Momentum braking in deep space

November 20, 2017

With a miniaturised space probe capable of accelerating to a quarter of the speed of light, we could reach Alpha Centauri, the nearest star, in 20 to 50 years. However, without a mechanism to slow it down, the space probe ...

Thruster for Mars mission breaks records

October 24, 2017

An advanced space engine in the running to propel humans to Mars has broken the records for operating current, power and thrust for a device of its kind, known as a Hall thruster.

Recommended for you

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.