New method for making improved radiation detectors

May 31, 2007

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory, with funding from DOE's National Nuclear Security Administration, have devised ways to improve the performance of radiation detectors, such as those used by law enforcement agencies to locate and identify radioactive material.

The improved sensors, for which the Laboratory has filed a U.S. provisional patent application, can be used at room temperature, which makes them more practical and cost-effective than existing detectors with similar performance, which must be operated at very cold temperatures using expensive liquid nitrogen. They can also more accurately detect the X-rays and gamma rays emitted by radiological sources such as dirty bombs and other illicit materials.

"Improving the performance of radiation detectors could improve the efficiency and accuracy of cargo screening at U.S. ports," said Brookhaven physicist Aleksey Bolotnikov, one of the inventors.

Radiation detectors work by detecting electrons and "holes" — vacancies left by liberated electrons — when ionizing radiation or high-energy particles strike the detector crystal. When the free electrons and holes flow toward electrodes (an anode and a cathode) at either end of the detector, they generate a signal that can be measured and recorded.

In an ideal detector, all of the electrons and holes created by the ionization process would arrive at the electrodes. But in reality, holes travel a very short distance before getting trapped by defects in the crystal. Also, because the electrostatic field inside the detector causes some of the electrons to drift, not all of them arrive at the anode. These losses lead to a subsequent inaccuracy in radiation measurements.

The Brookhaven-designed sensors improve on this situation by combining methods to shield the detector and focus the electrons toward the anode. In addition, the electrodes at each end of the detector give information about how many electrons/holes get trapped. This "correction factor" can then be used to reconstruct the number of electrons/holes originally created by incident gamma rays or high-energy particles.

"Together, these techniques enhance the energy resolution and efficiency of these detectors. In practical terms it means that the improved devices will be able to detect more minute quantities of radiation, detect radioactive materials more quickly or from greater distances, better identify the source of the radiation, and distinguish illicit sources of concern from common naturally occurring radioactive materials," Bolotnikov said.

The patent application covers the improved high-energy detectors, as well as methods for making and using them. Details of the electrode design and processing methods are also included.

Source: DOE/Brookhaven National Laboratory

Explore further: UN study: Cellphones can improve literacy

add to favorites email to friend print save as pdf

Related Stories

A full-spectrum Mars simulation in a box

Apr 18, 2014

There are many reasons why Mars excels at destroying expensive equipment. For one thing, its entire surface is made of partially-magnetized dust. For another, Mars possesses just enough atmosphere so that ...

Recommended for you

UN study: Cellphones can improve literacy

19 hours ago

A study by the U.N. education agency says cellphones are getting more and more people to read in countries where books are rare and illiteracy is high.

Gates-funded student data group to shut down

Apr 21, 2014

The head of a student data processing organization says it will shut down in the coming months following criticism that led to the recent loss of its last active client—New York state.

Four questions about missing Malaysian plane answered

Apr 19, 2014

Travelers at Asian airports have asked questions about the March 8 disappearance of Malaysia Airlines Flight 370 while en route from Kuala Lumpur to Beijing. Here are some of them, followed by answers.

User comments : 0

More news stories

Is nuclear power the only way to avoid geoengineering?

"I think one can argue that if we were to follow a strong nuclear energy pathway—as well as doing everything else that we can—then we can solve the climate problem without doing geoengineering." So says Tom Wigley, one ...

US urged to drop India WTO case on solar

Environmentalists Wednesday urged the United States to drop plans to haul India to the WTO to open its solar market, saying the action would hurt the fight against climate change.