IBM researchers demonstrate world's fastest optical chipset

Mar 26, 2007
IBM researchers demonstrate world's fastest optical chipset

At the 2007 Optical Fiber Conference, IBM scientists will reveal a prototype optical transceiver chipset capable of reaching speeds at least eight times faster than optical components available today.

The breakthrough could transform how data is accessed, shared and used across the Web for corporate and consumer networks. The transceiver is fast enough to reduce the download time for a typical high definition feature-length film to a single second compared to 30 minutes or more.

The ability to move information at blazing speeds of 160 Gigabits -- or 160 billion bits of information in a single second -- provides a glimpse of a new era of high-speed connectivity that will transform communications, computing and entertainment. Optical networking offers the potential to dramatically improve data transfer rates by speeding the flow of data using light pulses, instead of sending electrons over wires.

“The explosion in the amount of data being transferred, when downloading movies, TV shows, music or photos, is creating demand for greater bandwidth and higher speeds in connectivity,” said Dr. T.C. Chen, vice president, Science & Technology, IBM Research. “Greater use of optical communications is needed to address this issue. We believe our optical transceiver technology may provide the answer.”

As the amount of data transmitted over networks continues to grow, researchers have been looking for ways to make the use of optical signals more practical. The ability to use these signals could offer previously unheard of amounts of bandwidth and enhanced signal fidelity compared to current electrical data links. By shrinking and integrating the components into one package, and building them with standard low-cost, high-volume chip manufacturing techniques, IBM is making optical connectivity viable for widespread use.

For example, the technology could be integrated onto printed circuit boards to allow the components within an electronic system – such as a PC or set top box -- to communicate much faster, dramatically enhancing the performance of the system itself.

To achieve this new level of integration in the chipset, IBM researchers built an optical transceiver with driver and receiver integrated circuits in current CMOS technology, the same standard, high-volume, low-cost technology used for most chips today. They then coupled it with other necessary optical components made in more exotic materials, such as indium phosphide (InP) and gallium arsenide (GaAs), into one, integrated package only 3.25 by 5.25 millimeters in size.

This compact design provides both a high number of communications channels as well as very high speeds per channel, resulting in an amount of information transmitted per unit area of card space taken up by the chipset (the ultimate measure of viability for practical use) that is the highest ever. This transceiver chipset is designed to enable low cost optics by attaching to an optical printed circuit board employing densely spaced polymer waveguide channels using mass assembly processes.

The report on this work, “160-Gb/s, 16-Channel Full-Duplex, Single-Chip CMOS Optical Transceiver,” by C.L. Schow, F.E. Doany, O. Liboiron-Ladouceur, C. Baks, D.M. Kuchta, L. Schares, R. John, and J.A. Kash of IBM’s T. J. Watson Research Center, Yorktown Heights, N.Y. will be presented on March 29 at the 2007 Optical Fiber Conference in Anaheim. This work was partially funded by Defense Advanced Research Project Agency through the Chip to Chip Optical Interconnect (C2OI) program.

Source: IBM

Explore further: Infineon offers application optimized bipolar power modules introducing cost-effective solder bond modules

add to favorites email to friend print save as pdf

Related Stories

Intel Accelerates High Performance Computing Clusters

Jun 27, 2007

Intel Corporation today announced new technologies that will advance and accelerate growth of high-performance computing (HPC) – from deskside supercomputers to high-end petaflop-sized clusters.

IBM Extends Moore's Law to the Third Dimension

Apr 12, 2007

IBM today announced a breakthrough chip-stacking technology in a manufacturing environment that paves the way for three-dimensional chips that will extend Moore’s Law beyond its expected limits. The technology ...

Recommended for you

Audi to develop Tesla Model S all-electric rival

7 hours ago

The Tesla Model S has a rival. Audi is to develop all-electric family car. This is to be a family car that will offer an all-electric range of 280 miles (450 kilometers), according to Auto Express, which ...

A green data center with an autonomous power supply

12 hours ago

A new data center in the United States is generating electricity for its servers entirely from renewable sources, converting biogas from a sewage treatment plant into electricity and water. Siemens implemented ...

After a data breach, it's consumers left holding the bag

13 hours ago

Shoppers have launched into the holiday buying season and retailers are looking forward to year-end sales that make up almost 20% of their annual receipts. But as you check out at a store or click "purchase" on your online shopping cart ...

Can we create an energy efficient Internet?

13 hours ago

With the number of Internet connected devices rapidly increasing, researchers from Melbourne are starting a new research program to reduce energy consumption of such devices.

Brain inspired data engineering

14 hours ago

What if next-generation ICT systems could be based on the brain's structure and its cognitive and adaptive processes? A groundbreaking paradigm of brain-inspired intelligent ICT architectures is being born.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.