Mobile phones can soon survive being dropped

Mar 20, 2007
Mobile phones can soon survive being dropped
The reconstructed polymer (top) was found to conduct one thousand times better than the standard polymer (below) due to its fixed ladder-like structure. Credit: NWO

Dutch researcher Paulette Prins has demonstrated that plastic does not have to be a poorer conductor than present-day semiconductors. This opens up the way for a revolution in consumer electronics: mobile phones and MP3 players will soon survive being dropped.

Just imagine it. Consumer products that do not break if accidentally dropped, devices with flexible screens that can be rolled up, and products becoming a lot cheaper. Up until now it was a mere pipe dream. The limiting factor is the chips in such devices. These need to conduct electricity and plastic chips fail to make the grade. Plastic conducts at least 1000 times less well than the current generation of semi-conductors.

Prins showed that specially developed plastic can conduct just as well as existing semiconductors.

Conduction occurs when charge moves through the material. Prins discovered that in plastics, the movement of charge was mainly hindered by the structure of the material. Plastic is built up from polymers, which consist of complex chains. The greatest hindrances for conduction were the ends of the chains, fractures in the chains, and the chaos in and along the chains.

A German group of researchers rebuilt the chains. They formed a polymer with a relatively fixed, ladder-like structure. Prins made clever use of this. This polymer was found to conduct 1000 times better than had previously been shown for plastics.

The combination of simulations and advanced techniques makes Prins' research unique. She bombarded the material with electrons from a particle accelerator, which enabled her to study the rapid reactions in the plastic to an accuracy of 100 microseconds.

Subsequently she determined the conductance of the polymers by measuring the microwave absorption. This avoided the need to use electrodes. Such electrodes often disrupt the measurement. Prins published some of her findings in the leading journal Physical Review Letters.

Prins' research was funded by NWO.

Source: NWO

Explore further: Researchers discover new material to produce clean energy

add to favorites email to friend print save as pdf

Related Stories

Evolving robot brains

4 hours ago

Researchers are using the principles of Darwinian evolution to develop robot brains that can navigate mazes, identify and catch falling objects, and work as a group to determine in which order they should ...

Facebook fends off telecom firms' complaints

4 hours ago

Facebook founder Mark Zuckerberg fended off complaints on Monday that the hugely popular social network was getting a free ride out of telecom operators who host its service on smartphones.

Scientists find clues to cancer drug failure

4 hours ago

Cancer patients fear the possibility that one day their cells might start rendering many different chemotherapy regimens ineffective. This phenomenon, called multidrug resistance, leads to tumors that defy ...

Glass coating improves battery performance

4 hours ago

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications ...

Recommended for you

Unified theory for skyrmion-materials

Mar 03, 2015

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Why seashells' mineral forms differently in seawater

Mar 03, 2015

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

The building blocks of the future defy logic

Feb 26, 2015

Wake up in the morning and stretch; your midsection narrows. Pull on a piece of plastic at separate ends; it becomes thinner. So does a rubber band. One might assume that when a force is applied along an ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.