Mobile phones can soon survive being dropped

Mar 20, 2007
Mobile phones can soon survive being dropped
The reconstructed polymer (top) was found to conduct one thousand times better than the standard polymer (below) due to its fixed ladder-like structure. Credit: NWO

Dutch researcher Paulette Prins has demonstrated that plastic does not have to be a poorer conductor than present-day semiconductors. This opens up the way for a revolution in consumer electronics: mobile phones and MP3 players will soon survive being dropped.

Just imagine it. Consumer products that do not break if accidentally dropped, devices with flexible screens that can be rolled up, and products becoming a lot cheaper. Up until now it was a mere pipe dream. The limiting factor is the chips in such devices. These need to conduct electricity and plastic chips fail to make the grade. Plastic conducts at least 1000 times less well than the current generation of semi-conductors.

Prins showed that specially developed plastic can conduct just as well as existing semiconductors.

Conduction occurs when charge moves through the material. Prins discovered that in plastics, the movement of charge was mainly hindered by the structure of the material. Plastic is built up from polymers, which consist of complex chains. The greatest hindrances for conduction were the ends of the chains, fractures in the chains, and the chaos in and along the chains.

A German group of researchers rebuilt the chains. They formed a polymer with a relatively fixed, ladder-like structure. Prins made clever use of this. This polymer was found to conduct 1000 times better than had previously been shown for plastics.

The combination of simulations and advanced techniques makes Prins' research unique. She bombarded the material with electrons from a particle accelerator, which enabled her to study the rapid reactions in the plastic to an accuracy of 100 microseconds.

Subsequently she determined the conductance of the polymers by measuring the microwave absorption. This avoided the need to use electrodes. Such electrodes often disrupt the measurement. Prins published some of her findings in the leading journal Physical Review Letters.

Prins' research was funded by NWO.

Source: NWO

Explore further: Pseudoparticles travel through photoactive material

Related Stories

'Map spam' puts Google in awkward place

10 hours ago

Google was re-evaluating its user-edited online map system Friday after the latest embarrassing incident—an image of an Android mascot urinating on an Apple logo.

Team develops faster, higher quality 3-D camera

10 hours ago

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.