Shaky Ground

Feb 14, 2007
Shaky Ground
Graduate student Richard Styron makes a final visual check of a GPS antenna set-up over a newly installed geodetic benchmark near Laurel Galan, Nicaragua. This is one of several new sites installed near the boundary of the Nicaraguan Depression to investigate the transition from the seismically active forearc sliver to the stable Caribbean plate. Photo by Henry Turner.

University of Arkansas researchers have used measurements of tiny movements in the Earth's crust to gain a better understanding of earthquake dynamics in Nicaragua, where a large quake devastated the city of Managua in 1972. Their findings confirm a prediction of movement in the Earth's surface, but show little perpendicular strain associated with the movement, indicating a lack of coupling between the converging plates despite earthquake activity, a surprising finding.

University of Arkansas graduate student Henry L. Turner III, professors Pamela Jansma and Glen Mattioli of the University of Arkansas, Peter LaFemina of Penn State University, Armando Saballos of the Instituto Nicaragüense de Estudios Territoriales and Timothy Dixon of the University of Miami, Florida, reported their findings in the journal Geophysical Research Letters.

Nicaragua has a history of seismic activity, but little is known about the plate movements in the region and how they might be linked to earthquakes. Researchers know that the Earth's surface is broken into 12 major plates, with some minor plates. However, movement at the plate boundaries, where earthquake activity often occurs, varies, and in some places, like Nicaragua, the link between movement and earthquakes is poorly understood.

"We want to look at what the boundary is like," Turner said.

Using global positioning satellite technology, researchers have gathered data since 2000 that measure tiny movements of the Earth's surface at sites in Nicaragua. Researchers returned to the sites annually to collect data. Using the information gathered, Turner and his colleagues calculated the rate of movement along the Pacific coast of Nicaragua during that time frame.

They found that the region is moving to the northwest at a rate of about 15.1 millimeters per year relative to the Caribbean plate, a relatively fast clip in the world of plate movement. This movement corresponded well with a prediction made in 2001.

However, the researchers were surprised by a lack of perpendicular motion that would indicate the type of strain typical of earthquake-prone regions in subduction zones.

"There's definitely a large seismic hazard there," Turner said. "That makes you think that there's some coupling occurring on the plate interface." Coupling, or locking, happens when plate boundaries stick, then slip, creating the motion that causes earthquakes.

"It's possible that some of what we're seeing could be post-seismic relaxation," Turner said. Another possibility is that frequent, small events are releasing the energy that normally would build up, or the locked portion of the plate interface is too shallow and too far offshore for the arc-normal component of strain to be detected. Turner and his colleagues plan to develop more complex models to help determine the relationship between movement and earthquakes in the region.

"It's probably a combination of the three," Turner said.

Turner, Jansma and Mattioli are in the geosciences department of the J. William Fulbright College of Arts and Sciences. Turner is also a distinguished doctoral fellow in the Arkansas Center for Space and Planetary Sciences.

Source: University of Arkansas

Explore further: Better forecasts for sea ice under climate change

add to favorites email to friend print save as pdf

Related Stories

G20 talk fest echoed on Twitter

20 minutes ago

Brisbane's G20 Leaders' Summit proved a Twitter talk fest, attracting 1.02 million tweets since October 23.

US northeast braces for flooding after record snow

19 hours ago

Weather forecasters and emergency officials warned Sunday that melting snow would lead to heavy flooding in parts of the US northeast, with hundreds of thousands of people told to brace for fast-rising waters.

Recommended for you

Better forecasts for sea ice under climate change

5 hours ago

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

"Ferrari of space' yields best map of ocean currents

13 hours ago

A satellite dubbed the "Ferrari of space" has yielded the most accurate model of ocean circulation yet, boosting understanding of the seas and a key impact of global warming, scientists said Tuesday.

Researcher studies deformation of tectonic plates

16 hours ago

Sean Bemis put his hands together side by side to demonstrate two plates of the earth's crust with a smooth boundary running between them. But that boundary is not always smooth and those plates do not always ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.