Researchers closer to mastering the 'spookiness' of quantum mechanics

Dec 15, 2006
Researchers closer to mastering the 'spookiness' of quantum mechanics
One of the most famous code-breakers is the Colossus – used by the British during World War Two to break German signals intelligence. Credit: TopFoto/HIP.

Oxford theorists and their Cambridge collaborator have moved a step closer to creating a machine that would fully harness the deepest laws of physics, quantum mechanics. The machine, called a quantum computer, would have a range of potential uses – including code breaking. It could exactly simulate the behaviour of matter at the atomic scale, providing new insights to chemists and biologists.

Quantum dots – tiny nuggets of one material embedded inside another – could be the ideal building blocks for a quantum computer. However, in order to build such a device, it is necessary to create ‘entanglement’ between different dots, a phenomenon labelled ‘spooky’ by Einstein and the essential resource that would give a quantum computer its power.

In Physical Review Letters, Oxford student Avinash Kolli and his coauthors suggest a new way to create entanglement, by identifying two different stable states of a quantum dot (call them ‘A’ and ‘B’) and then targeting two such dots simultaneously with a laser.

The team discovered that, by watching the light emitted back from the dots, they would learn exactly one piece of information – namely, whether the two dots are in the same state as one another (AA or BB) or different states (AB or BA).

Crucially, this is the only piece of information that would come back. If the two dots are in different states, and if there really is no further information, then nature itself has absolutely no evidence indicating which is A and which is B. This would mean that the actual state of the two dots would be both AB and BA at the same time.

This strange state is a so-called quantum superposition. It is also an entanglement between the dots – the maximum possible degree of entanglement in fact.

Avinash Kolli said: ‘So, simply by illuminating the two dots with a laser and watching the light they emit, entanglement can be created – the elusive resource that will make quantum computation possible.’

A lot of work still needs to be done to flesh out this idea into a full blueprint for a quantum dot computer, but the predictions are testable with existing laboratory equipment. The team is now looking for experimentalists to collaborate on testing this proposal.

Source: University of Oxford

Explore further: Missing link in metal physics explains Earth's magnetic field

add to favorites email to friend print save as pdf

Related Stories

JQI researchers create entangled photons from quantum dots

Nov 18, 2009

To exploit the quantum world to the fullest, a key commodity is entanglement—the spooky, distance-defying link that can form between objects such as atoms even when they are completely shielded from one another. Now, physicists ...

Recommended for you

Particle physicists discuss JUNO neutrino experiment

17 hours ago

The construction of the facilities for the JUNO neutrino experiment has been initiated with an official groundbreaking ceremony near the south Chinese city of Jiangmen. Involved in the Jiangmen Underground ...

New pathway to valleytronics

Jan 27, 2015

A potential avenue to quantum computing currently generating quite the buzz in the high-tech industry is "valleytronics," in which information is coded based on the wavelike motion of electrons moving through ...

New portable vacuum standard

Jan 26, 2015

A novel Portable Vacuum Standard (PVS) has been added to the roster of NIST's Standard Reference Instruments (SRI). It is now available for purchase as part of NIST's ongoing commitment to disseminate measurement ...

Prototype for first traceable PET-MR phantom

Jan 26, 2015

As cancer diagnostic tools, a new class of imagers – which combines positron-emission tomography (PET) with magnetic resonance imaging (MR or MRI) – has shown promise in the few years since these hybrid ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.