Fastest waves ever photographed

Oct 27, 2006
Fastest waves ever photographed
Images of a wakefield produced by a 30 TW laser pulse in plasma of density 2.7 x 10^18 cm^-3. The color image is a 3-D reconstruction of the oscillations, and the grey-scale is a 2D projection of the same data. These waves show curved wavefronts, an important feature for generating and accelerating electrons that has been predicted, but never before seen. Credit: Michael Downer, University of Texas at Austin, and Nicholas Matlis, University of Texas at Austin

Plasma physicists at the Universities of Texas and Michigan have photographed speedy plasma waves, known as Langmuir waves, for the first time using a specially designed holographic-strobe camera.

The waves are the fastest matter waves ever photographed, clocking in at about 99.997% of the speed of light. The waves are generated in the wake of an ultra-intense laser pulse, and give rise to enormous electric fields, reaching voltages higher than 100 billion electron volts/meter (GeV/m).

The waves' electric fields can be used to accelerate electrons so strongly that they may lead to ultra-compact, tabletop versions of a high-energy particle accelerators that could be a thousand times smaller that devices which currently exists only in large-scale facilities, which are typically miles long.

Until now, a critical element necessary for understanding interaction between electrons and accelerating wakes has been missing: the ability to see the waves. The new photographic technique uses two additional laser pulses moving with the waves to image the wakefield ripples, enabling researchers to see them for the first time and revealing theoretically predicted but never-before-seen features. The ability to photograph these elusive, speedy waves promises to be an important step towards making compact accelerators a reality.

The record-setting images will be presented next week at the 48th Annual Meeting of the American Physical Society's Division of Plasma Physics, which runs October 30-November 3, 2006, in Philadelphia, Pennsylvania.

Source: American Physical Society

Explore further: Boron-based atomic clusters mimic rare-earth metals

Related Stories

Heart of the black auroras revealed by Cluster

Apr 09, 2015

Most people have heard of auroras - more commonly known as the Northern and Southern Lights - but, except on rare occasions, such as the recent widespread apparition on 17 March, they are not usually visible ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

How particle accelerator maths helped me fix my Wi-Fi

Mar 25, 2015

Electromagnetic radiation – it might sound like something that you'd be better off avoiding, but electromagnetic waves of various kinds underpin our senses and how we interact with the world – from the ...

Recommended for you

Boron-based atomic clusters mimic rare-earth metals

Apr 17, 2015

Rare Earth elements, found in the f-block of the periodic table, have particular magnetic and optical properties that make them valuable commodities. This has been particularly true over the last thirty years ...

Accurately counting ions from laboratory radiation exposure

Apr 15, 2015

Thermoluminescence is used extensively in archaeology and the earth sciences to date artifacts and rocks. When exposed to radiation, quartz emits light proportional to the energy it absorbs. Replicating the very low dose ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.