Fastest waves ever photographed

Oct 27, 2006
Fastest waves ever photographed
Images of a wakefield produced by a 30 TW laser pulse in plasma of density 2.7 x 10^18 cm^-3. The color image is a 3-D reconstruction of the oscillations, and the grey-scale is a 2D projection of the same data. These waves show curved wavefronts, an important feature for generating and accelerating electrons that has been predicted, but never before seen. Credit: Michael Downer, University of Texas at Austin, and Nicholas Matlis, University of Texas at Austin

Plasma physicists at the Universities of Texas and Michigan have photographed speedy plasma waves, known as Langmuir waves, for the first time using a specially designed holographic-strobe camera.

The waves are the fastest matter waves ever photographed, clocking in at about 99.997% of the speed of light. The waves are generated in the wake of an ultra-intense laser pulse, and give rise to enormous electric fields, reaching voltages higher than 100 billion electron volts/meter (GeV/m).

The waves' electric fields can be used to accelerate electrons so strongly that they may lead to ultra-compact, tabletop versions of a high-energy particle accelerators that could be a thousand times smaller that devices which currently exists only in large-scale facilities, which are typically miles long.

Until now, a critical element necessary for understanding interaction between electrons and accelerating wakes has been missing: the ability to see the waves. The new photographic technique uses two additional laser pulses moving with the waves to image the wakefield ripples, enabling researchers to see them for the first time and revealing theoretically predicted but never-before-seen features. The ability to photograph these elusive, speedy waves promises to be an important step towards making compact accelerators a reality.

The record-setting images will be presented next week at the 48th Annual Meeting of the American Physical Society's Division of Plasma Physics, which runs October 30-November 3, 2006, in Philadelphia, Pennsylvania.

Source: American Physical Society

Explore further: Mist-collecting plants may bioinspire technology to help alleviate global water shortages

Related Stories

How particle accelerator maths helped me fix my Wi-Fi

22 hours ago

Electromagnetic radiation – it might sound like something that you'd be better off avoiding, but electromagnetic waves of various kinds underpin our senses and how we interact with the world – from the ...

Humble neutron is valuable tool in geology

Mar 16, 2015

With the ability to analyse the properties of the Earth's internal components to the atomic scale in conditions only found kilometres below our feet, recent studies have allowed geoscientists to study our ...

"Mini supernova" explosion could have big impact

Mar 16, 2015

In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and ...

New insight found in black hole collisions

Feb 26, 2015

New research by an astrophysicist at The University of Texas at Dallas provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger ...

Recommended for you

Super sensitive measurement of magnetic fields

Mar 30, 2015

There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers ...

New idea for Dyson sphere proposed

Mar 30, 2015

(Phys.org)—A pair of Turkish space scientists with Bogazici University has proposed that researchers looking for the existence of Dyson spheres might be looking at the wrong objects. İbrahim Semiz and ...

Turning back time by controlling magnetic interactions

Mar 30, 2015

In many materials, macroscopic magnetic properties emerge when microscopically small magnets align in a fixed pattern throughout the whole solid. In a publication in Nature Communications, Johan Mentink, Karste ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.