Scientists present method for entangling macroscopic objects

Oct 24, 2006 feature
Scientists present method for entangling macroscopic objects
The scientists´ scheme for detecting macroscopic entanglement: two laser pulses reflect off two identical oscillators, exciting a vibrational mode which generates optical sideband modes. After a beam splitter mixes the "Stokes" modes (red), detectors perform measurements which turn the optomechanical entanglement into mechanical entanglement. Credit: Stefano Pirandola, et al.

Building upon recent studies on optomechanical entanglement with lasers and mirrors, a group of scientists has developed a theoretical model using entanglement swapping in order to entangle two micromechanical oscillators. This ability could lead to advances in information processing, as well as other applications that use micromechanical resonators, such as electrometers, displacement detectors, and radio frequency signal processors, wrote scientists Stefano Pirandola et al. in a recent Physical Review Letters.

"Until now, entanglement has been observed only for optical modes, i.e., photons (which are massless particles)," Pirandola told PhysOrg.com. "The significance of purely mechanical entanglement would be that it involves massive objects like mechanical oscillators (small vibrations on a mirror). Even though the oscillators must be small--their mass should be on the order of micrograms and their length around the micrometer--these sizes are 'macroscopic' for a quantum mechanical object."

The two entangled oscillators in Pirandola et al's proposed model are the mechanical components of two separate micro-opto-mechanical systems. Instead of entangling the oscillators directly, the scientists suggested entangling the optical parts of the systems--the reflected laser beams--and then used entanglement swapping to correlate the two oscillators.

In entanglement swapping, two objects that have correlated properties never meet directly; instead, a third party acts as a messenger between the two, swapping their properties as accurately as if they had directly interacted. One potential use for entanglement swapping is in quantum repeaters for future quantum computers, which would amp up the signal over long distances to prevent it from being buried by noise and dying out.

Earlier studies on optomechanical entanglement (extensively performed by the Univ. of Camerino group) demonstrated that radiation pressure from an intense laser beam shining on an oscillator could excite the oscillator's vibrational mode and yield two optical sideband modes induced by the vibrations. In the current scheme, when the two oscillators are positioned in such a way that their generated optical modes meet after reflecting, the beams could be mixed with a beam splitter.

Next, a "middleman" detection device would detect and mix the optical modes, and also perform measurements such as joined Homodyne detections, which are standard optical measurements for detecting radiation. When the detector performs these measurements, it can pass on the outcomes of the measurements to both the oscillators. Through this swapping, the entanglement changes from optomechanical to purely mechanical.

In addition to opening the doors to future applications, mechanical macroscopic entanglement would also demonstrate that mechanical systems made of atoms can exhibit quantum behaviour. Pirandola et al's calculations for quantum entanglement on a macroscopic scale, in a purely mechanical state, suggest that quantum phenomenon may not be as limited to the quantum world as scientists once thought.

"Would this theoretical scheme diminish the differences between the macroscopic and quantum worlds? This is a fundamental question of quantum mechanics," said Pirandola. "Whether or not there is a maximum size for oscillators that demonstrate entanglement is an open question right now. We don't know if there is some limit for the sizes of the objects to be entangled. Optimists think that it is only a matter of advances in quantum technologies."

Citation: Pirandola, Stefano, Vitali, David, Tombesi, Paolo, and Lloyd, Seth. "Macroscopic Entanglement by Entanglement Swapping." Physical Review Letters. 97, 150403 (2006).

By Lisa Zyga, Copyright 2006 PhysOrg.com

Explore further: Tiny magnetic sensor deemed attractive

add to favorites email to friend print save as pdf

Related Stories

Two photons strongly coupled by glass fiber

Nov 02, 2014

Usually, light waves do not interact with each other. Coupling of photons with other photons is only possible with the help of special materials and very intense light. Scientists in Vienna have now created ...

A new approach to on-chip quantum computing

Oct 02, 2014

Commercial devices capable of encrypting information in unbreakable codes exist today, thanks to recent quantum optics advances, especially the generation of photon pairs—tiny entangled particles of light. ...

Entanglement in a flash (w/ video)

Jun 05, 2013

(Phys.org) —JQI researchers under the direction of Chris Monroe have produced quantum entanglement between a single atom's motion and its spin state thousands of times faster than previously reported, demonstrating unprecedented ...

Recommended for you

Particles, waves and ants

8 hours ago

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.