Scientists present method for entangling macroscopic objects

Oct 24, 2006 feature
Scientists present method for entangling macroscopic objects
The scientists´ scheme for detecting macroscopic entanglement: two laser pulses reflect off two identical oscillators, exciting a vibrational mode which generates optical sideband modes. After a beam splitter mixes the "Stokes" modes (red), detectors perform measurements which turn the optomechanical entanglement into mechanical entanglement. Credit: Stefano Pirandola, et al.

Building upon recent studies on optomechanical entanglement with lasers and mirrors, a group of scientists has developed a theoretical model using entanglement swapping in order to entangle two micromechanical oscillators. This ability could lead to advances in information processing, as well as other applications that use micromechanical resonators, such as electrometers, displacement detectors, and radio frequency signal processors, wrote scientists Stefano Pirandola et al. in a recent Physical Review Letters.

"Until now, entanglement has been observed only for optical modes, i.e., photons (which are massless particles)," Pirandola told "The significance of purely mechanical entanglement would be that it involves massive objects like mechanical oscillators (small vibrations on a mirror). Even though the oscillators must be small--their mass should be on the order of micrograms and their length around the micrometer--these sizes are 'macroscopic' for a quantum mechanical object."

The two entangled oscillators in Pirandola et al's proposed model are the mechanical components of two separate micro-opto-mechanical systems. Instead of entangling the oscillators directly, the scientists suggested entangling the optical parts of the systems--the reflected laser beams--and then used entanglement swapping to correlate the two oscillators.

In entanglement swapping, two objects that have correlated properties never meet directly; instead, a third party acts as a messenger between the two, swapping their properties as accurately as if they had directly interacted. One potential use for entanglement swapping is in quantum repeaters for future quantum computers, which would amp up the signal over long distances to prevent it from being buried by noise and dying out.

Earlier studies on optomechanical entanglement (extensively performed by the Univ. of Camerino group) demonstrated that radiation pressure from an intense laser beam shining on an oscillator could excite the oscillator's vibrational mode and yield two optical sideband modes induced by the vibrations. In the current scheme, when the two oscillators are positioned in such a way that their generated optical modes meet after reflecting, the beams could be mixed with a beam splitter.

Next, a "middleman" detection device would detect and mix the optical modes, and also perform measurements such as joined Homodyne detections, which are standard optical measurements for detecting radiation. When the detector performs these measurements, it can pass on the outcomes of the measurements to both the oscillators. Through this swapping, the entanglement changes from optomechanical to purely mechanical.

In addition to opening the doors to future applications, mechanical macroscopic entanglement would also demonstrate that mechanical systems made of atoms can exhibit quantum behaviour. Pirandola et al's calculations for quantum entanglement on a macroscopic scale, in a purely mechanical state, suggest that quantum phenomenon may not be as limited to the quantum world as scientists once thought.

"Would this theoretical scheme diminish the differences between the macroscopic and quantum worlds? This is a fundamental question of quantum mechanics," said Pirandola. "Whether or not there is a maximum size for oscillators that demonstrate entanglement is an open question right now. We don't know if there is some limit for the sizes of the objects to be entangled. Optimists think that it is only a matter of advances in quantum technologies."

Citation: Pirandola, Stefano, Vitali, David, Tombesi, Paolo, and Lloyd, Seth. "Macroscopic Entanglement by Entanglement Swapping." Physical Review Letters. 97, 150403 (2006).

By Lisa Zyga, Copyright 2006

Explore further: The birth of topological spintronics

add to favorites email to friend print save as pdf

Related Stories

Entanglement in a flash (w/ video)

Jun 05, 2013

( —JQI researchers under the direction of Chris Monroe have produced quantum entanglement between a single atom's motion and its spin state thousands of times faster than previously reported, demonstrating unprecedented ...

Recommended for you

Chemist develops X-ray vision for quality assurance

1 hour ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

1 hour ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

18 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

20 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

21 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

User comments : 0