New device tests uncertainty principle with new precision

Sep 22, 2006
New device tests uncertainty principle with new precision
A scanning electron microscope image of an aluminum and silicon nitride resonator coupled to a superconducting single electron transistor (SSET). Researchers watched the resonator move through a phenomenon known as quantum back-action.

In the submicroscopic world -- the domain of elementary particles and individual atoms -- things behave in the strange, counter-intuitive fashion governed by the principles of quantum mechanics. Nothing (or so it seems) like our macroscopic world -- or even the microscopic world of cells or bacteria or dust particles -- where Newton's much more reasonable laws keep things sensibly ordered.

The problem comes in finding the dividing line between the two worlds -- or even in establishing that such a line exists. To that end, Keith Schwab, associate professor of physics who moved to Cornell this year from the National Security Agency, and colleagues have created a device that approaches this quantum mechanical limit at the largest length-scale to date.

And surprisingly, the research also has shown how researchers can lower the temperature of an object -- just by watching it.

The results, which could have applications in quantum computing, cooling engineering and more, appear in the Sept. 14 issue of the journal Nature.

The device is actually a tiny (8.7 microns, or millionths of a meter, long; 200 nanometers, or billionths of a meter, wide) sliver of aluminum on silicon nitride, pinned down at both ends and allowed to vibrate in the middle. Nearby, Schwab positioned a superconducting single electron transistor (SSET) to detect minuscule changes in the sliver's position.

According to the Heisenberg Uncertainty Principle, the precision of simultaneous measurements of position and velocity of a particle is limited by a quantifiable amount. Schwab and his colleagues were able to get closer than ever to that theoretical limit with their measurements, demonstrating as well a phenomenon called back action, by which the act of observing something actually gives it a nudge of momentum.

"We made measurements of position that are so intense -- so strongly coupled -- that by looking at it we can make it move," said Schwab. "Quantum mechanics requires that you cannot make a measurement of something and not perturb it. We're doing measurements that are very close to the uncertainty principle; and we can couple so strongly that by measuring the position we can see the thing move."

The device, while undeniably small, is -- at about ten thousand billion atoms -- vastly bigger than the typical quantum world of elementary particles.

Still, while that result was unprecedented, it had been predicted by theory. But the second observation was a surprise: By applying certain voltages to the transistor, the researchers saw the system's temperature decrease.

"By looking at it you cannot only make it move; you can pull energy out of it," said Schwab. "And the numbers suggest, if we were to keep going on with this work, we would be able to cool this thing very cold. Much colder than we could if we just had this big refrigerator."

The mechanism behind the cooling is analogous to a process called optical or Doppler cooling, which allows atomic physicists to cool atomic vapor with a red laser. This is the first time the phenomenon has been observed in a condensed matter context.

Schwab hasn't decided if he'll pursue the cooling project. More interesting, he says, is the task of figuring out the bigger problem of quantum mechanics: whether it holds true in the macroscopic world; and if not, where the system breaks down.

For that he's focusing on another principle of quantum mechanics -- the superposition principle -- which holds that a particle can simultaneously be in two places.

"We're trying to make a mechanical device be in two places at one time. What's really neat is it looks like we should be able to do it," he said. "The hope, the dream, the fantasy is that we get that superposition and start making bigger devices and find the breakdown."

Source: Cornell University

Explore further: Finding faster-than-light particles by weighing them

add to favorites email to friend print save as pdf

Related Stories

Tricking the uncertainty principle

May 15, 2014

( —Caltech researchers have found a way to make measurements that go beyond the limits imposed by quantum physics.

Physicists move closer to the quantum limit

Apr 12, 2004

A new experiment in the US has come close to detecting quantum effects in a macroscopic object. Keith Schwab and colleagues from the National Security Agency (NSA) working at the University of Maryland have measured the vibrations ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.