Quantum physicists control supercurrent

Aug 10, 2006

Netherlands scientists say they've shown that in a quantum-mechanical circuit, the current can be reversed by using a single electron.

The researchers led by Leo Kouwenhoven from the Delft University of Technology created a superconducting quantum interference device, or SQUID, and discovered they could reverse the current by placing an electron on a "weak link" where the current has to jump across a kind of barrier.

In the SQUID made by Kouwenhoven's team the current circulates around a ring-shaped circuit made from microscopic aluminum wire. There are two breaks in the loop, each bridged by wires just 60 nanometres wide and made from the semiconductor indium arsenide. At very low temperatures the aluminum becomes superconducting and the current is carried by pairs of electrons with zero electrical resistance.

The team used electric fields to turn the semiconductor nanowires into "quantum dots" -- isolated islands of electrical charge. Electron pairs can jump to and from the islands, so the supercurrent becomes chopped into discrete parcels of two electrons.

By adding just one electron to the quantum dot the researchers found they could reverse the direction of the supercurrent.

The physics are explained in the journal Nature.

Copyright 2006 by United Press International

Explore further: Soft, energy-efficient robotic wings

Related Stories

Getting a critical edge on plutonium identification

Mar 24, 2015

A collaboration between NIST scientists and colleagues at Los Alamos National Laboratory (LANL) has resulted in a new kind of sensor that can be used to investigate the telltale isotopic composition of plutonium ...

Recommended for you

CERN researchers confirm existence of the Force

9 hours ago

Researchers at the Large Hadron Collider just recently started testing the accelerator for running at the higher energy of 13 TeV, and already they have found new insights into the fundamental structure ...

Soft, energy-efficient robotic wings

Mar 31, 2015

Dielectric elastomers are novel materials for making actuators or motors with soft and lightweight properties that can undergo large active deformations with high-energy conversion efficiencies. This has ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.