Quantum physicists control supercurrent

Aug 10, 2006

Netherlands scientists say they've shown that in a quantum-mechanical circuit, the current can be reversed by using a single electron.

The researchers led by Leo Kouwenhoven from the Delft University of Technology created a superconducting quantum interference device, or SQUID, and discovered they could reverse the current by placing an electron on a "weak link" where the current has to jump across a kind of barrier.

In the SQUID made by Kouwenhoven's team the current circulates around a ring-shaped circuit made from microscopic aluminum wire. There are two breaks in the loop, each bridged by wires just 60 nanometres wide and made from the semiconductor indium arsenide. At very low temperatures the aluminum becomes superconducting and the current is carried by pairs of electrons with zero electrical resistance.

The team used electric fields to turn the semiconductor nanowires into "quantum dots" -- isolated islands of electrical charge. Electron pairs can jump to and from the islands, so the supercurrent becomes chopped into discrete parcels of two electrons.

By adding just one electron to the quantum dot the researchers found they could reverse the direction of the supercurrent.

The physics are explained in the journal Nature.

Copyright 2006 by United Press International

Explore further: Researchers demonstrate ultra low-field nuclear magnetic resonance using Earth's magnetic field

add to favorites email to friend print save as pdf

Related Stories

Optalysys will launch prototype optical processor

Aug 09, 2014

UK-based startup Optalysys is moving ahead to deliver exascale levels of processing power on a standard-sized desktop computer within the next few years, reported HPCwire earlier this week. The company itself ...

Molecular shuttle speeds up hydrogen production

Aug 14, 2014

An LMU team affiliated with the Nanosystems Initiative Munich (NIM) has achieved a breakthrough in light-driven generation of hydrogen with semiconductor nanocrystals by using a novel molecular shuttle to ...

Recommended for you

User comments : 0