NYU joins ATLAS project to explore fundamental nature of matter

Jul 26, 2006

A team of New York University physicists has joined a world-wide collaboration to investigate the fundamental nature of matter and the basic forces that shape the universe. The collaboration, ATLAS, is based at the European Organization for Nuclear Research, or CERN, in Geneva, Switzerland, and will employ CERN's Large Hadron Collider (LHC), which will be operational in the latter half of 2007.

Members of the NYU Experimental High Energy Physics group who will be working on this project include Professors Peter Nemethy and Allen Mincer, and researchers Rashid Djilkibaev, Rostislav Konoplich, Christopher Musso, and Long Zhao.

The Atlas collaboration, which includes 1800 physicists from 150 institutions in 35 countries, will measure collisions between bunches of protons occurring 40 million times a second. The LHC, which is being built in a 27 kilometer circumference tunnel and which upon completion will be the world's highest energy accelerator, will speed up and steer counter-rotating proton bunches so that they collide in the center of the ATLAS detector. The debris of the collisions reveals the nature of fundamental particle processes and may also contain as-yet undiscovered particles. The energy density in these high energy collisions is similar to that of the early universe less than a billionth of a second after the Big Bang.

Among other studies, ATLAS will search for the Higgs particle, which is the only predicted particle of the Standard Model of Particle Physics that has yet to be detected. The Standard Model of Particle Physics describes the universe in terms of its fundamental particles and the forces between them. The project will also seek to detect a host of new particles not described in the Standard Model of Particle Physics but predicted by many Beyond the Standard Model theories such as Supersymmetry.

The NYU physicists will contribute to the endeavor by developing a method for culling collisions relevant to their investigation from the large number occurring. At about 2 Mega Bytes of information per event, storing 40 million bunch-crossings per second would require one thousand 80 gigabyte disks (the size of a hard disk on a typical personal computer) per second. As it is not possible to deal with so much data, ATLAS uses three stages of storing and discarding collisions that ultimately lets the researchers store about one out of 200,000 events. The NYU team is currently focusing on one property of these interactions that allows separation of meaningful from insignificant collisions.

For more on ATLAS, go to atlas.ch/

Source: New York University

Explore further: Could 'Jedi Putter' be the force golfers need?

add to favorites email to friend print save as pdf

Related Stories

Quirky quark combination creates exotic new particle

Apr 10, 2014

Since the spectacular discovery of the Higgs boson in 2012, physicists at the Large Hadron Collider (LHC), the gigantic particle accelerator outside Geneva, have suffered a bit of a drought when it comes ...

ATLAS sees Higgs boson decay to fermions

Nov 28, 2013

The ATLAS experiment at CERN has released preliminary results that show evidence that the Higgs boson decays to two tau particles. Taus belong to a group of subatomic particles called the fermions, which ...

Englert and Higgs win Nobel physics prize (Update 4)

Oct 08, 2013

Nearly 50 years after they came up with the theory, but little more than a year since the world's biggest atom smasher delivered the proof, Britain's Peter Higgs and Belgian colleague Francois Englert won ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

3 hours ago

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

18 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...