NASA Releases Initial Images From CALIPSO

Jul 25, 2006
A lidar profile from the CALIPSO spacecraft, specifically the 523 nanometer Total Attenuated Backscatter. To view a higher resolution version with altitude information and latitude and longitude of the gathered data, click on the image. Credit: NASA Langley Research Center.

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation spacecraft known as CALIPSO is returning never-before-seen images of clouds and aerosols, tiny particles suspended in the air.

These new images are revealing the secrets of how clouds and aerosols form, evolve and interact with the atmosphere. CALIPSO's first images were taken in early June. They highlight the results of a major lava dome collapse at the Soufriere Hills Volcano on the island of Montserrat in the Caribbean. The dome collapse on May 20 involved an explosion that sent ash clouds 55,000 feet into the sky.

To see the satellite's initial images, visit: www.nasa.gov/calipso

"The ability to observe and track a volcanic plume high in the atmosphere from the eruption of Soufriere Hills illustrates the high sensitivity of the satellite's instruments and the promise of discoveries to come," said David Winker, CALIPSO principal investigator at NASA's Langley Research Center, Hampton, Va. "These are exciting views of aerosols and clouds from around the globe."

On June 7 CALIPSO's lidar, a device similar to radar that emits pulsed laser light instead of microwaves, obtained a vertical profile of the aerosol remnants of the Montserrat volcanic activity over Indonesia. Upper air movement carried a sulfur dioxide plume from the Caribbean island more than 11,000 miles to Southeast Asia.

By globally observing aerosols' movement and altitude, CALIPSO improves our ability to assess and forecast their impact around the Earth. For example, volcanic plumes have an impact on air traffic safety, since the plumes are hazardous to commercial aircraft when they cross flight lanes. Aerosol activity at lower altitudes affects air quality.

The three instruments aboard CALIPSO are aligned to view the same area and work together to provide improved information on the size of ice crystals and other properties of thin clouds. The primary instrument is a polarization lidar that provides unique, high-resolution vertical profiles of aerosols and clouds using laser pulses. It can detect natural and human-produced aerosols and thin clouds that are invisible to radar, and sometimes even to the human eye.

The spacecraft's wide-field camera is used to determine cloud uniformity and provide a broader view of the location viewed by the lidar. The imaging infrared radiometer operates continuously, providing information on cirrus cloud particle size and infrared emissions activity. It looks at the top surface of a broad sweep of cloud area.

CALIPSO was launched April 28 from Vandenberg Air Force Base, Calif., with NASA's CloudSat satellite. Both satellites orbit 438 miles above Earth as members of NASA's A-Train constellation of five Earth observing system satellites. A-Train stands for "afternoon," because the constellation crosses the equator every day starting at 1:30 p.m. eastern time. The constellation provides new insights into the global distribution and evolution of clouds, helping to improve weather forecasting and climate prediction.

CALIPSO was developed cooperatively by NASA and France's Centre National d'Etudes Spatiales. Langley is leading the CALIPSO mission and providing overall project management, systems engineering, and payload mission operations. NASA's Goddard Space Flight Center, Greenbelt, Md., provides support for system engineering, project and program management.

CNES provides a PROTEUS spacecraft developed by Alcatel Alenia Space, the radiometer instrument, and spacecraft mission operations. Hampton University, Hampton, Va., is providing scientific contributions and managing the outreach program. Ball Aerospace, Boulder, Colo., developed the lidar and on-board visible camera.

Source: NASA

Explore further: Thousands of intense earthquakes rock Iceland

add to favorites email to friend print save as pdf

Related Stories

A global view of oceanic phytoplankton

Jul 18, 2014

University of Maine oceanographer Ivona Cetinic is participating in a NASA project to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain.

OCO-2 takes the A-Train to study Earth's atmosphere

Jul 04, 2014

(Phys.org) —Every day, above our planet, five Earth-observing satellites rush along like trains on the same "track," flying minutes, and sometimes seconds, behind one another. They carry more than 15 scientific ...

When waters rise: NASA improves flood safety

Mar 20, 2014

Flooding is the most frequent and widespread weather-related natural disaster, taking a huge toll in lives and property each year. NASA Earth-observing satellites and airborne missions provide vital information ...

Astronaut view of Colorado fires

Jun 27, 2013

Thick smoke billows across the landscape in these digital photographs of the western United States. Both photographs were taken by astronauts aboard the International Space Station (ISS) on June 19, 2013.

Punching holes in the sky

Jul 12, 2011

Scientists, photographers and amateur cloud watchers have been looking up with wonderment and puzzlement at "hole punch" clouds for decades. Giant, open spaces appear in otherwise continuous cloud cover, presenting ...

Recommended for you

NASA sees Depression 12-E become Tropical Storm Lowell

15 hours ago

In less than 24 hours after Tropical Depression 12-E was born in the eastern Pacific Ocean it strengthened into Tropical Storm Lowell. NOAA's GOES-West and NASA's Aqua satellite captured infrared images of ...

Why global warming is taking a break

16 hours ago

The average temperature on Earth has barely risen over the past 16 years. ETH researchers have now found out why. And they believe that global warming is likely to continue again soon.

User comments : 0