3D movie at 'ultraresolution' shows how cell’s machinery bends membrane inwards

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have combined the power of two kinds of microscope to produce a 3-dimensional movie of how cells 'swallow' nutrients and other molecules by engulfing them. The study, published today in Cell, is the first to follow changes in the shape of the cell's membrane and track proteins thought to influence those changes. It also provides ample data to investigate this essential process further.

This 'swallowing', called , is involved in a variety of crucial tasks. It is used by relaying information to each other, for instance, and is also hijacked by many viruses, which use it to invade their host's cells. When a cell is about to swallow some molecules, a dent appears in the cell's membrane, and gradually expands inwards, pinching off to form a little pouch, or vesicle, that transports molecules into the cell.

Scientists at EMBL have combined the power of two kinds of microscope to produce a three-dimensional movie of how cells ‘swallow’ nutrients and other molecules by engulfing them. The study is the first to follow changes in the shape of the cell’s membrane and track proteins thought to influence those changes. Credit: EMBL/W.Kukulski

To investigate how the cell's machinery pulls in the membrane and forms the vesicle, researchers led by Marko Kaksonen and John Briggs employed a method they developed two years ago to faithfully follow the exact same first under a and then with the higher resolution of an . This enabled them to combine two sets of data that so far could only be obtained in isolation: the timing and sequence with which different components of the cell's machinery arrive at the vesicle-to-be, and the 3D changes to membrane shape that ultimately form that vesicle. They discovered, for instance, that the first proteins to arrive on the inside of the cell's membrane are not able to start bending it inwards until a network of the cell's , actin, forms and starts pulling on the membrane.

The data used to make the video is freely available to the scientific community and will, Kaksonen and Briggs believe, provide valuable information to others trying to develop physical models of how this process works. The EMBL scientists themselves are probing the roles of individual proteins in this process, by perturbing them, and would like to extend the current work in yeast to human cells.

More information: Kukulski, W., Schorb, M., Kaksonen, M. & Briggs, J.A.B. Time-resolved electron tomography reveals how the plasma membrane is reshaped during endocytosis. Cell, 3 August 2012.

Journal information: Cell

Citation: 3D movie at 'ultraresolution' shows how cell’s machinery bends membrane inwards (2012, August 3) retrieved 14 January 2025 from https://phys.org/news/2012-08-3d-movie-ultraresolution-cells-machinery.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

'Transformer' protein makes different sized transport pods

0 shares

Feedback to editors