Virtual research institute needed to unlock RNA's promise

Oct 11, 2010

A Europe-wide network of labs focusing on RNA research is needed to make the most of RNA's high potential for treating a wide range of diseases. The recommendation for this virtual research institute comes from a panel of biologists at the European Science Foundation in a report published today, 'RNA World: a new frontier in biomedical research'.

Ten years on from the , RNA () has stolen some of DNA's limelight. The basic ingredient of our genes, DNA long outshone the other form of in our cells, RNA. RNA was seen as a simple stepping stone in the cell's gene-reading activities.

Research over the last decade has shown RNA to be a remarkable molecule and a multi-talented actor in heredity. It is thought to be a major participant in the chemical reactions that led to the origins of life on Earth - the 'RNA World' hypothesis. RNA also controls genes in a way that was only recently discovered: a process called , or RNAi. Medical researchers are currently testing new types of RNAi-based drugs for treating conditions such as macular degeneration, the leading cause of blindness, and various infections, including those caused by HIV and the .

"RNA could bring significant advances to the diagnosis, treatment and prevention of many human diseases," said Professor Jörg Vogel from the University of Würzburg, Germany, who co-chaired the report. "In the global context, it's surprising that Europe doesn't have many centres specifically funded for and dedicated to it, particularly in comparison to the US. We strongly recommend creating a network of RNA centres, linked together as a Europe-wide 'virtual institute'. A first step could involve calls through the European Commission and national funders. "

The virtual RNA institute would be made up of locally-funded, multidisciplinary centres with a critical mass of strong research groups in disciplines such as biology, biochemistry, chemistry, genetics, bioinformatics, biophysics, structural analysis, microbiology, plant sciences and clinical medicine. This environment could be well-suited to promoting superior training of a generation of young scientists, PhD students and postdoctoral researchers. They could also help deliver dedicated education programmes for RNA research, which are currently lacking.

A particular area where an increasing demand in the future can be foreseen is, as in almost all other areas of life science, bioinformatics. "A new generation of bioinformaticians needs to be trained to meet future demand, in RNA research and in many other areas of the life sciences," continues Professor Vogel.

New models for public funding of infrastructure and resources for promising compounds to be used in the clinic should be developed. The financial burden for taking basic compounds and developing them into drugs could be shared by academic-industrial partnerships.

'RNA World: a new frontier in biomedical research' reviews the high pace of discovery in RNA research and gives a 5-10 year outlook of how both basic RNA research and its use in clinical practice should develop. Nine thematic priority areas were identified to address new and promising opportunities for biomedical, biotechnological, pharmaceutical and clinical research.

Explore further: Researchers discover new strategy germs use to invade cells

More information: www.esf.org/publications/

add to favorites email to friend print save as pdf

Related Stories

RNA research strategy for Europe takes shape

Mar 04, 2009

Research into RNA, a molecule found in every cell of our bodies, could lead to remarkable advances in the treatment of diseases such as cancer and diabetes, a meeting organised by the European Science Foundation was told.

Closing a loophole in the RNA World Hypothesis

Jan 15, 2007

New scientific research may close a major loophole in the RNA world hypothesis, the idea that ribonucleic acid -- not the fabled DNA that makes up genes in people and other animals -- was the key to life's emergence on Earth ...

RNAi shows promise in gene therapy, researcher says

Feb 19, 2007

Three years ago Mark Kay, MD, PhD, published the first results showing that a biological phenomenon called RNA interference could be an effective gene therapy technique. Since then he has used RNAi gene therapy to effectively ...

Explained: RNA interference

Nov 12, 2009

Every high school biology student learns the basics of how genes are expressed: DNA, the cell’s master information keeper, is copied into messenger RNA, which carries protein-building instructions to the ...

Recommended for you

Researchers discover new strategy germs use to invade cells

8 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

8 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0