Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding

September 19, 2007

An algorithm utilizing structure mapping and thermodynamics is introduced for RNA pseudoknot prediction. The method finds the minimum free energy in the context of the biological folding direction (5’ to 3’) of RNA sequences.

It also identifies information about the flexibility of the RNA. Mapping methods are used to build and analyze the folded structure and add important 3D structural considerations.

The model suggests that many biological RNA molecules are optimized by natural selection to fold correctly in the natural context and that stable intermediate RNA secondary structure can persist that anticipates pseudoknot formation.

The model will be published in the online, open-access journal PLoS ONE on September 19.

Source: Public Library of Science

Explore further: Atlas of brain blood vessels provides fresh clues to brain diseases

Related Stories

Dengue takes low and slow approach to replication

January 11, 2018

A new study reveals how dengue virus manages to reproduce itself in an infected person without triggering the body's normal defenses. Duke researchers report that dengue pulls off this hoax by co-opting a specialized structure ...

Down's syndrome research breaks new ground

November 28, 2017

Down's syndrome, also known as trisomy 21, is one of the most common genetic diseases. Researchers from the University of Geneva (UNIGE) and ETH Zurich (ETHZ), Switzerland, have recently analysed the proteins of individuals ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.