Tsunami risk higher in Los Angeles, other major cities

Oct 10, 2010
An empty beach is seen in the Ile a Vache, a paradise island in front of the city of Les Cayes, Haiti. The magnitude 7.0 earthquake that struck Haiti in January, killing a quarter of a million people, also unleashed a string of tsunamis on the country's western coast, scientists reported on Sunday.

(PhysOrg.com) -- Geologists studying the Jan. 12 Haiti earthquake say the risk of destructive tsunamis is higher than expected in places such as Kingston, Istanbul, and Los Angeles.

Like Haiti's capital, these cities all lie near the coast and near an active geologic feature called a strike-slip fault where two slide past each other like two hands rubbing against each other.

Until now, geologists did not consider the risk to be very high in these places because when these faults rupture, they usually do not vertically displace the seafloor much, which is how most tsunamis are generated. This latest research suggests even a moderate on a strike-slip fault can generate tsunamis through submarine landslides, raising the overall tsunami risk in these places.

"The scary part about that is you do not need a large earthquake to trigger a large tsunami," said Matt Hornbach, research associate at The University of Texas at Austin's Institute for Geophysics and lead author on a paper describing the research in the Oct. 10 online edition of the journal Nature Geoscience.

"Organizations that issue tsunami warnings usually look for large earthquakes on thrust faults," said Hornbach. "Now we see you don't necessarily need those things. A moderate earthquake on a strike-slip fault can still be cause for alarm."

Within minutes after the magnitude 7 Haiti earthquake, a series of tsunami waves, some as high as 9 feet (3 meters), crashed into parts of the shoreline. A few weeks later, a team of scientists from the U.S. and Haiti conducted geological field surveys of sites on and offshore near the quake's .

Following the Jan. 12 Haiti earthquake, sediments near the town of Grand Goave slid into the sea, triggering a tsunami. Satellite images before (top left) and after (bottom left) show the location of the landslide. Seafloor bathymetry collected with sonar (right) reveals the slide path.

The scientists determined the tsunamis were generated primarily by weak sediment at the shore that collapsed and slid along the seafloor, displacing the overlying water. Combined with newly discovered evidence of historic tsunamis, the survey revealed a third of all tsunamis in the area are generated in this way. Geologists had previously estimated only about 3 percent of tsunamis globally are generated through submarine landslides.

"We found that tsunamis around Haiti are about 10 times more likely to be generated in this way than we would have expected," said Hornbach.

In addition to Hornbach, team members from The University of Texas at Austin include: Paul Mann, Fred Taylor, Cliff Frohlich, Sean Gulick and Marcy Davis. The team also includes researchers from Queens College, City University of New York; U.S. Geological Survey, University of Missouri; Lamont-Doherty Earth Observatory of Columbia University; University of California, Santa Barbara; Bureau of Mines and Energy (Haiti); and Universite d'Etat de Haiti.

The researchers gathered data on faults beneath the seafloor and land, vertical movement of the land, bathymetry (underwater topography) of the and evidence of . They worked on foot, on a small inflatable boat and on the 165-foot research vessel Endeavor.

This research was funded by a Rapid Response grant from the National Science Foundation and The University of Texas at Austin's Jackson School of Geosciences.

With additional funding from The Society for Geophysics' Geoscientists Without Borders program, Hornbach and others are now conducting a new research project in nearby Jamaica to assess the tsunami threat there.

"The geology of Kingston, Jamaica is nearly identical to Port Au Prince, Haiti," said Hornbach. "It's primed and ready to go and they need to prepare for it. The good news is, they have a leg up because they're aware of the problem."

Explore further: Thousands of intense earthquakes rock Iceland

Related Stories

Scientists Assess Haiti's Future Earthquake Threats

Mar 25, 2010

(PhysOrg.com) -- Before the Jan. 12 earthquake that leveled Port-au-Prince, the last great quake to strike Haiti was more than 150 years ago. Assessing historical seismic activity can be critical to understanding ...

Chilean Earthquake Triggers Smaller Than Expected Tsunami

Mar 01, 2010

(PhysOrg.com) -- While a huge earthquake off the coast of Chile triggered a tsunami that moved at the speed of a jet aircraft across the Pacific Ocean Feb. 27, the event was smaller scientists expected, said a University ...

East Coast tsunamis maps to be created

Nov 23, 2005

Two University of Rhode Island scientists have been awarded an $86,000 grant to create tsunami warning maps of the East Coast of the United States.

Recommended for you

NASA sees Tropical Storm Lowell's tough south side

1 hour ago

The south side of Tropical Storm Lowell appears to be its toughest side. That is, the side with the strongest thunderstorms, according to satellite imagery from NOAA's GOES-14 and NASA-NOAA's Suomi NPP satellites.

NASA sees Depression 12-E become Tropical Storm Lowell

Aug 19, 2014

In less than 24 hours after Tropical Depression 12-E was born in the eastern Pacific Ocean it strengthened into Tropical Storm Lowell. NOAA's GOES-West and NASA's Aqua satellite captured infrared images of ...

Why global warming is taking a break

Aug 19, 2014

The average temperature on Earth has barely risen over the past 16 years. ETH researchers have now found out why. And they believe that global warming is likely to continue again soon.

User comments : 0