NASA's CloudSat satellite sees a powerful heat engine in Typhoon Malakas

Sep 24, 2010
CloudSat captured an image of Typhoon Malakas at12:09 a.m. EDT on Sept. 23 that indicated strong convection on either side of the storm eyewall, with maximum cloud top heights around 9.3 miles (15 kilometers) in the southern quadrant of the storm, and approaching 10 miles (16 km) in the northern quadrant. Credit: NASA/JPL/Colorado State University/Naval Research Laboratory-Monterey

Towering thunderstorms and heavy rainfall are two things that NASA's CloudSat satellite saw as it passed over Typhoon Malakas, and those two factors confirm a strong storm. NASA's CloudSat satellite's Cloud Profiling Radar can basically slice a tropical cyclone in half and take a look at its clouds and rainfall, and that's what it did when it passed over Typhoon Malakas on Sept. 23.

CloudSat flew over Typhoon Malakas during the daytime on Sept. 23. At that time, Malakas had a minimum central pressure of 965 millibars, maximum winds of around 115 mph (100 knots), and a width (winds greater than or equal to 57 mph or 50 knots) of around 150 nautical miles.

Dr. Matt Rogers, a research scientist who works on the CloudSat team at the Dept. of , Colorado State University, Fort Collins, Colo. noted that the " CloudSat overpass of the typhoon occurred around 4:09 GMT (12:09 a.m. EDT/1:09 p.m. local time/Japan), and radar imagery of the typhoon indicated strong convection on either side of the storm eyewall, with maximum cloud top heights around 9.3 miles (15 kilometers) in the southern quadrant of the storm, and approaching 10 miles (16 km) in the northern quadrant."

A strong convective (rapidly rising air that creates the thunderstorms that power a tropical cyclone) cell dominates the northern quadrant of the storm, while several smaller convective cells combine to make up the southern quadrant, according to the CloudSat overpass.

"The presence of heavy rainfall near the storm core causes radar attenuation - a condition that occurs when the vast amount of water present in the storm scatters or absorbs all available radar energy, leaving no signal to return to the satellite," Rogers said.

also detected an eye 50 nautical miles wide, and around it were the strong thunderstorms wrapping around it and into the storm's center from the southeastern quadrant.

At 1500 UTC (11 a.m. EDT) on Sept. 24, Malakas has maximum sustained winds near 103 mph (90 knots). It was located about 75 nautical miles west-northwest of Chi Chi Jima, Japan near 29.8 North and 142.4 East. It was moving north-northeast near 26 mph (23 knots) and kicking up 31-foot high seas.

Malakas has tracked over Iwo To and Chi Chi Jima and is now headed into open waters this weekend. It is forecast to stay at sea and away from land, paralleling the coast of Japan. By Saturday, Malakas is forecast to start transitioning into an extra-tropical storm and weaken gradually. As it continues northeast it will encounter stronger vertical westerly wind shear which will help weaken the system somewhat, but it is forecast to still remain an intense storm after the transition.

Explore further: Stuck-in-the-mud plankton reveal ancient temperatures

add to favorites email to friend print save as pdf

Related Stories

NASA captures Typhoon Nida's clouds from 2 angles

Nov 30, 2009

NASA satellites capture amazing views of tropical cyclones, and the Aqua and CloudSat satellites captured a top-down look at temperatures in Typhoon Nida's clouds, and an image of what they look like from ...

Imani on the weakening on weekend

Mar 26, 2010

This isn't a good weekend for keeping tropical cyclones alive, as Tropical Storm Omais is becoming extra-tropical in the northwestern Pacific Ocean and Tropical Storm Imani appears doomed over the weekend in the Southern ...

Recommended for you

Stuck-in-the-mud plankton reveal ancient temperatures

2 hours ago

New research in Nature Communications showing how tiny creatures drifted across the ocean before falling to the seafloor and being fossilised has the potential to improve our understanding of past climat ...

NASA sees Mozambique Channel's new tropical storm

3 hours ago

Tropical Cyclone 15S formed in the Mozambique Channel of the Southern Indian Ocean, and the Global Precipitation Measurement or GPM core satellite gathered data on its rainfall rates.

How rain is dependent on soil moisture

3 hours ago

It rains in summer most frequently when the ground holds a lot of moisture. However, precipitation is most likely to fall in regions where the soil is comparatively dry. This is the conclusion reached by ...

ESA image: Hungarian mosaic

3 hours ago

This image of Hungary, with the political border in white, is a mosaic of 11 scans by Sentinel-1A's radar from October to December 2014.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.