Scientists using lasers to cool and control molecules

Sep 20, 2010

(PhysOrg.com) -- Ever since audiences heard Goldfinger utter the famous line, “No, Mr. Bond; I expect you to die,” as a laser beam inched its way toward James Bond and threatened to cut him in half, lasers have been thought of as white-hot beams of intensely focused energy capable of burning through anything in their path.

Now a team of Yale physicists has used lasers for a completely different purpose, employing them to cool molecules down to temperatures near what’s known as absolute zero, about -460 degrees Fahrenheit. Their new method for , described in the online edition of the journal Nature, is a significant step toward the ultimate goal of using individual molecules as information bits in quantum computing.

Currently, scientists use either individual atoms or “artificial atoms” as , or , in their efforts to develop quantum processors. But individual atoms don’t communicate as strongly with one another as is needed for qubits. On the other hand, artificial atoms—which are actually circuit-like devices made up of billions of atoms that are designed to behave like a single atom—communicate strongly with one another, but are so large they tend to pick up interference from the outside world. Molecules, however, could provide an ideal middle ground.

“It’s a kind of Goldilocks problem,” said Yale physicist David DeMille, who led the research. “Artificial atoms may prove too big and individual atoms may prove too small, but molecules made up of a few different atoms could be just right.”

In order to use molecules as qubits, physicists first have to be able to control and manipulate them—an extremely difficult feat, as molecules generally cannot be picked up or moved without disturbing their . In addition, even at molecules have a lot of kinetic energy, which causes them to move, rotate and vibrate.

To overcome the problem, the Yale team pushed the molecules using the subtle kick delivered by a steady stream of photons, or particles of light, emitted by a laser. Using laser beams to hit the molecules from opposite directions, they were able to reduce the random velocities of the molecules. The technique is known as laser cooling because temperature is a direct measurement of the velocities in the motion of a group of molecules. Reducing the molecules’ motions to almost nothing is equivalent to driving their temperatures to virtually absolute zero.

While scientists had previously been able to cool individual atoms using lasers, the discovery by the Yale team represents the first time that lasers have just as successfully cooled molecules, which present unique challenges because of their more complex structures.

The team used the molecule strontium monofluoride in their experiments, but DeMille believes the technique will also prove successful with other molecules. Beyond quantum computing, laser cooling molecules has potential applications in chemistry, where near temperatures could induce currently inaccessible reactions via a quantum mechanical process known as “quantum tunneling.” DeMille also hopes to use laser cooling to study particle physics, where precise measurements of molecular structure could give clues as to the possible existence of exotic, as of yet undiscovered particles.

cooling of atoms has created a true scientific revolution. It is now used in areas ranging from basic science such as Bose-Einstein condensation, all the way to devices with real-world impacts such as atomic clocks and navigation instruments,” DeMille said. “The extension of this technique to molecules promises to open an exciting new range of scientific and technological applications.”

Explore further: Information storage for the next generation of plastic computers

More information: DOI: 10.1038/nature09443

Related Stories

Using lasers to cool and manipulate molecules

Dec 07, 2009

(PhysOrg.com) -- "For years, we have been using laser cooling to trap and manipulate atoms," David DeMille tells PhysOrg.com. "This has been very useful for both basic science and many applications. Recent ...

Recommended for you

How to test the twin paradox without using a spaceship

22 hours ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

sender
4 / 5 (1) Sep 20, 2010
Collimation of atoms to create molecules utilizing multiple optical trap systems could allow for simple molecular fusion experiments.
Justsayin
not rated yet Sep 25, 2010
how about applying this technology to A/C units or refrigerators. I hope in future this tech will morph into miniature, portable, low power lasers used to cheaply cool just about anything.

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Sony's PlayStation 4 sales top seven million

Sony says it has sold seven million PlayStation 4 worldwide since its launch last year and admitted it can't make them fast enough, in a welcome change of fortune for the Japanese consumer electronics giant.