Opening the path to scaling silicon quantum computers

Research collaboration between UNSW and the University of Sydney has overcome a fundamental hurdle to building quantum computers in silicon, opening the way to further develop the machines at scale.

Immunizing quantum computers against errors

Building a quantum computer requires reckoning with errors—in more than one sense. Quantum bits, or "qubits," which can take on the logical values zero and one simultaneously, and thus carry out calculations faster, are ...

'Immunizing' quantum bits so that they can grow up

Quantum computers will process significantly more information at once compared to today's computers. But the building blocks that contain this information – quantum bits, or "qubits" – are way too sensitive to their surroundings ...

Researchers determine the performance of multi-dimensional bits

What kinds of computers would be conceivable if physics worked differently? Quantum physicists Marius Krumm from the University of Vienna and Markus Müller from the Viennese Institute of Quantum Optics and Quantum Information ...

A new way to count qubits

Researchers at Syracuse University, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer.

page 1 from 17