New wave: Spin soliton could be a hit in cell phone communication (w/ Video)

Sep 15, 2010
The animation this frame was taken from (q.v.) shows the development of the soliton over the course of about 2.7 nanoseconds. Current begins passing through the channel in the center, causing the magnetization to oscillate. These oscillations initially move throughout the layer, but after 1.8 ns the magnetization under the hole inverts to form the soliton (center changes to red) and the oscillations are then localized. Credit: NIST

Researchers at the National Institute of Standards and Technology have found theoretical evidence* of a new way to generate the high-frequency waves used in modern communication devices such as cell phones. Their analysis, if supported by experimental evidence, could contribute to a new generation of wireless technology that would be more secure and resistant to interference than conventional devices.

The team's findings point toward an oscillator that would harness the spin of electrons to generate microwaves—electromagnetic waves in the frequencies used by mobile devices. is a fundamental property, in addition to basic , that can be used in electronic circuits. The discovery adds another potential effect to the list of spin's capabilities.

The team's work—a novel variation on several types of previously proposed experimental oscillators—predicts that a special type of stationary wave called a "soliton" can be created in a layer of a multilayered magnetic sandwich. Solitons are shape-preserving waves that have been seen in a variety of media. (They first were observed in a boat canal in 1834 and now are used in optical fiber communications.) Creating the soliton requires that one of the sandwich layers be magnetized perpendicular to the plane of the sandwiched layers; then an electric current is forced through a small channel in the sandwich. Once the soliton is established, the magnetic orientation oscillates at more than a billion times a second.

This video is not supported by your browser at this time.
This animation shows the development of the soliton over the course of about 2.7 nanoseconds. Current begins passing through the channel in the center, causing the magnetization to oscillate. These oscillations initially move throughout the layer, but after 1.8 ns the magnetization under the hole inverts to form the soliton (center changes to red) and the oscillations are then localized. Credit: NIST

"That's the frequency of microwaves," says NIST physicist Thomas Silva. "You might use this effect to create an oscillator in cell phones that would use less energy than those in use today. And the military could use them in secure communications as well. In theory, you could change the frequency of these devices quite rapidly, making the signals very hard for enemies to intercept or jam."

Silva adds that the oscillator is predicted to be very stable—its frequency remaining constant even with variations in current—a distinct practical advantage, as it would reduce unwanted noise in the system. It also appears to create an output signal that would be both steady and strong.

The team's prediction also has value for fundamental research.

"All we've done at this point is the mathematics, but the equations predict these effects will occur in devices that we think we can realize," Silva says, pointing out that the research was inspired by materials that already exist. "We'd like to start looking for experimental evidence that these localized excitations occur, not least because solitons in other materials are hard to generate. If they occur in these devices as our predictions indicate, we might have found a relatively easy way to explore their properties."

Explore further: X-rays probe LHC for cause of short circuit

More information: * M.A. Hoefer, T.J. Silva and M.W. Keller. Theory for a dissipative droplet soliton excited by a spin torque nanocontact. Physical Review B, 82, 054432 (2010), Aug. 30. 2010. DOI:10.1103/PhysRevB.82.054432

add to favorites email to friend print save as pdf

Related Stories

Finding the right soliton for future networks

May 14, 2008

European researchers say their study of self-sustaining solitary light wave packets could result in a new generation of computers and optical telecommunications networks. Using light rather than electronic or magnetic devices ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

plasticpower
not rated yet Sep 16, 2010
Put that in my iPhone. Maybe it will alleviate some of AT&T's suckiness.
Mr_Man
not rated yet Sep 16, 2010
Maybe one of the major phone companies will buy the patent, when/if it gets to that stage.
nicknick
not rated yet Sep 17, 2010
Can you modulate with OFDM on these solitons ?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.