Supercontinuum generation and soliton dynamics milestone achieved

November 20, 2008,

A research team led by Fetah Benabid, University of Bath, has observed for the first time the simultaneous emission of two resonant dispersive waves by optical solitons (waves that maintain their shape while traveling at constant speeds). By designing a special fiber with an extremely small waveguiding feature located in the photonic crystal fiber cladding, the researchers were able to bring the theoretical prediction into the experimental demonstration, creating waves on both sides of the pump. This research appears in the current issue of the Optical Society's Optics Letters.

Since the 1980s, dispersive waves have been studied in the concept of solitons. The waves result due to perturbations that cause the soliton to lose some energy. Now, because of the flexibility in the design of Benabid's fiber, the waves are more general than they have been in the past. These "general" waves allow for a further degree of control over supercontinuum generation and have enabled a new way of generating coherent supercontinuum spectra, which is useful in a number of applications such as frequency combs. In addition, this new milestone introduces the opportunity for very compact femtosecond lasers.

For the first time, two resonant dispersive waves have been observed on both sides of the pump, providing an experimental corroboration to what previously only had been theoretical.
The unique design of the fiber itself – a nanometric-sized, rectangular-shaped waveguiding feature located in the photonic crystal fiber cladding – makes these waves more general than they have been in past experiments.

The tight confinement along with the particular dispersion properties allow supercontinuum to be generated very efficiently and over very short length, creating the potential for very compact femtosecond lasers.

Citation: "Fourth-order dispersion mediated solitonic radiations in HC-PCF cladding," Optics Letters, Vol. 33, Issue 22, pp. 2680.

Source: Optical Society of America

Explore further: A shoe-box-sized chemical detector

Related Stories

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

Optics Researchers See the Light

May 25, 2004

Lehigh's Jean Toulouse and Iavor Veltchev are studying a phenomenon that few scientists in the world have been able to achieve. Two physicists at Lehigh have produced a rainbow of visible and invisible colors by focusing ...

Broadband light sources with liquid core

July 31, 2017

Research scientists from Jena have produced broadband laser light in the mid-infrared range with the help of liquid-filled optical fibers. The experiment produced proof of a new dynamics of hybrid solitons—temporally and ...

Recommended for you

Pattern formation—the paradoxical role of turbulence

February 19, 2018

The formation of self-organizing molecular patterns in cells is a critical component of many biological processes. Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have proposed a new theory to explain how ...

Converting heat into electricity with pencil and paper

February 19, 2018

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive ...

Bringing a hidden superconducting state to light

February 16, 2018

A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). When cooled to a certain temperature and with certain concentrations of barium, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Flakk
not rated yet Nov 20, 2008
Woohoo!



Sory someone had to say something in favor os such an enthusiastic article.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.