Scientists develop device to enable improved global data transmission

Sep 07, 2010

Researchers have developed a new data transmission system that could substantially improve the transmission capacity and energy efficiency of the world's optical communication networks.

Transmission of data through optical networks is currently limited by 'phase noise' from optical amplifiers and 'cross talk' induced by interaction of the signal with the many other signals (each at a different wavelength) simultaneously circulating through the network. 'Phase noise' is the rapid, short-term, in the phase of a signal, which affects the quality of the information sent and results in data transmission errors. 'Cross talk' refers to any signal unintentionally affecting another signal.

Now, researchers working on the EU-funded FP7 PHASORS project, led by the University of Southampton's Optoelectronics Research Centre (ORC), have announced a major advance in the potential elimination of this interference.

Traditionally has been sent as a sequence of bits that were coded in the amplitude of the light beam, a system that was simple and practical but inefficient in its use of bandwidth. Until recent years, this wasn't a problem given the enormous data-carrying capacity of an optical fibre. However, the introduction of bandwidth-hungry video applications, such as YouTube, and the continued growth of the internet itself have led to increasing interest in finding more efficient data signalling formats - in particular, schemes that code data in the phase rather than amplitude of an optical beam.

In a paper published this week in the journal , scientists on the PHASORS project announced the development of the first practical phase sensitive amplifier and phase regenerator for high-speed binary phase encoded signals. This device, unlike others developed in the past, eliminates the phase noise directly without the need for conversion to an , which would inevitably slow the speeds achievable.

The device takes an incoming noisy data signal and restores its quality by reducing the build up of phase noise and also any amplitude noise at the same time.

ORC Deputy Director and PHASORS Director, Professor David Richardson comments: "This result is an important first step towards the practical implementation of all-optical signal processing of phase encoded signals, which are now being exploited commercially due to their improved data carrying capacity relative to conventional amplitude coding schemes.

"Our regenerator can clean noise from incoming data signals and should allow for systems of extended physical length and capacity. In order to achieve this result, a major goal of the PHASORS project, has required significant advances in both and semiconductor laser technology across the consortium. We believe this device and associated component technology will have significant applications across a range of disciplines beyond telecommunications - including optical sensing, metrology, as well as many other basic test and measurement applications in science and engineering."

The PHASORS project, which started in 2008, was tasked with developing new technology and components to substantially improve the transmission capacity and of today's optical communication networks.

The project combines the world-leading expertise of research teams from the ORC, Chalmers University of Technology (Sweden), The Tyndall National Institute at University College Cork (Ireland), the National and Kapodestrian University of Athens (Greece), and leading industrial partners Onefive GmbH (Switzerland), Eblana Photonics (Ireland) and OFS (Denmark).

Explore further: FX says overnight ratings becoming meaningless

Provided by University of Southampton

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Fiber Optical Transmission In Demand Of Higher Capacity

Apr 02, 2010

(PhysOrg.com) -- With the increasing high volume content over the internet, such as multimedia and high definition images, new transmission methods need to be found to handle the increasing data demand. Nippon ...

Data transport via fibre-optic network could be faster still

Dec 07, 2006

Due to the explosive growth in data transport the need for a greater utilisation of the bandwidth of fibre-optic networks is increasing. Dutch researcher Erwin Verdurmen examined how the transmission capacity of the glass ...

New device for ultrafast optical communications

Mar 01, 2010

A new device invented by engineers at UC Davis could make it much faster to convert pulses of light into electronic signals and back again. The technology could be applied to ultrafast, high-capacity communications, ...

Recommended for you

Scalping can raise ticket prices

14 hours ago

Scalping gets a bad rap. For years, artists and concert promoters have stigmatized ticket resale as a practice that unfairly hurts their own sales and forces fans to pay exorbitant prices for tickets to sold-out concerts. ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Skultch
not rated yet Sep 09, 2010
Wouldn't this also help with throughput on small scale fiber networks?
Skeptic_Heretic
not rated yet Sep 09, 2010
Wouldn't this also help with throughput on small scale fiber networks?

Not in most cases. Small scale network fiber is typically end point to end point, or end point to gateway.
Skultch
not rated yet Sep 13, 2010
Yeah, I was thinking about OC3 and 12, but I doubt it's cost effective for that, at least for a while. Ha. I think I misunderstood the article, anyway. I read it as a new modulation technique, but it's just a noise filter, of sorts, which hasn't been necessary until recently. I talked to a fiber transport installer this weekend and he was surprised they would need this, but he only works with regional lines.