Fat serves as cells' built-in pH sensor: research

Aug 26, 2010

A specific type of fat present in cell membranes also serves as a cellular pH sensor, a team of University of British Columbia researchers has discovered.

pH is a measure of acidity or basicity. Cells need to maintain pH in order to perform their normal . However, the mechanisms by which cells monitor pH were unknown.

"Scientists have known that specific proteins can detect changes in pH under certain circumstances," says Chris Loewen, an assistant professor in the Department of Cellular and Physiological Sciences in the UBC Faculty of Medicine and a member of the UBC Life Sciences Institute. "But we found that a specific phospholipid, or fat, called phosphatidic acid, which is present in all cells, is actually responsible for detecting pH."

The findings are published today in the journal Science.

"Using brewer's yeast as a model, we found that, when deprived of nutrients, the resulting decrease in cellular pH affected the chemical state of phosphatidic acid. This in turn altered and ," says Dr. Loewen, who is also a member of the Brain Research Centre at UBC and Vancouver Coastal Health Research Institute.

The new findings have important implications for understanding human metabolism and disease because lipid structure and function are very similar amongst all organisms. Further work is needed to explore the implications of this discovery for other areas, such as tumour progression - because both phosphatidic acid and pH play important roles in this process - and brain research - because dynamically change their cellular pH, implying they, too, use a pH sensor.

Explore further: Researchers find protein necessary for fertility performs different roles in sperm, eggs

Related Stories

Cells in the land of milk and honey

Aug 10, 2010

Researchers at the Institute of Biochemistry at ETH Zurich have discovered that cells measure their energy reserves with the aid of a sensor, which determines whether they are growing and dividing. This could ...

Cellular stress causes fatty liver disease in mice

Dec 08, 2008

A University of Iowa researcher and colleagues at the University of Michigan have discovered a direct link between disruption of a critical cellular housekeeping process and fatty liver disease, a condition that causes fat ...

New technique developed for tracking cells in the body

Mar 20, 2007

Scientists' inability to follow the whereabouts of cells injected into the human body has long been a major drawback in developing effective medical therapies. Now, researchers at Johns Hopkins have developed a promising ...

Recommended for you

In a role reversal, RNAs proofread themselves

Jan 29, 2015

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

Growing functioning brain tissue in 3D

Jan 29, 2015

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.