Fat serves as cells' built-in pH sensor: research

Aug 26, 2010

A specific type of fat present in cell membranes also serves as a cellular pH sensor, a team of University of British Columbia researchers has discovered.

pH is a measure of acidity or basicity. Cells need to maintain pH in order to perform their normal . However, the mechanisms by which cells monitor pH were unknown.

"Scientists have known that specific proteins can detect changes in pH under certain circumstances," says Chris Loewen, an assistant professor in the Department of Cellular and Physiological Sciences in the UBC Faculty of Medicine and a member of the UBC Life Sciences Institute. "But we found that a specific phospholipid, or fat, called phosphatidic acid, which is present in all cells, is actually responsible for detecting pH."

The findings are published today in the journal Science.

"Using brewer's yeast as a model, we found that, when deprived of nutrients, the resulting decrease in cellular pH affected the chemical state of phosphatidic acid. This in turn altered and ," says Dr. Loewen, who is also a member of the Brain Research Centre at UBC and Vancouver Coastal Health Research Institute.

The new findings have important implications for understanding human metabolism and disease because lipid structure and function are very similar amongst all organisms. Further work is needed to explore the implications of this discovery for other areas, such as tumour progression - because both phosphatidic acid and pH play important roles in this process - and brain research - because dynamically change their cellular pH, implying they, too, use a pH sensor.

Explore further: Fighting bacteria—with viruses

Related Stories

Cells in the land of milk and honey

Aug 10, 2010

Researchers at the Institute of Biochemistry at ETH Zurich have discovered that cells measure their energy reserves with the aid of a sensor, which determines whether they are growing and dividing. This could ...

Cellular stress causes fatty liver disease in mice

Dec 08, 2008

A University of Iowa researcher and colleagues at the University of Michigan have discovered a direct link between disruption of a critical cellular housekeeping process and fatty liver disease, a condition that causes fat ...

New technique developed for tracking cells in the body

Mar 20, 2007

Scientists' inability to follow the whereabouts of cells injected into the human body has long been a major drawback in developing effective medical therapies. Now, researchers at Johns Hopkins have developed a promising ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0