Imec, ASML demonstrate potential of 193nm immersion lithography with freeform illumination

Jul 14, 2010
Double patterning of the contact and metal layer for a 22nm node SRAM of 0.078µm2 bit cell area using freeform illumination.

Imec and ASML collaborated to qualify ASML's Tachyon Source Mask Optimization and programmable illuminator system FlexRay, proving its potential with the demonstration of a 22nm SRAM memory cell.

In October 2010, the ASML XT:1900i lithography scanner at Imec will be equipped with FlexRay, enabling imec to step ahead and further explore the ultimate frontiers of immersion lithography.

A key part of any optical lithography system is the illuminator. It creates the pupil shape, i.e. the condition and shape of the before it hits the mask. By tailoring the pupil shape to the specific layout to be printed, the resolution and process margins can be improved. Optimizing the pupil shape is thus critical, especially with process tolerances reaching the limits of manufacturability.

The use of a customized freeform illumination source shape - optimized for a particular critical chip layout - leads to enhanced imaging results. Early joint development work between imec and ASML compared the use of traditional and freeform illumination modes, and demonstrated convincing improvement in all imaging quality metrics (process latitudes: exposure latitude, depth of focus, mask error factor), and with that also proved clear enhancement in the CD uniformity control over the entire chip and wafer area. Consequently, optimized freeform illumination helps bringing the limits of immersion lithography to areas where traditional illumination modes cannot get, and in that respect enables continued chip feature shrink and faster ramp to volume production, resulting in higher production yields.

Freeform illumination has become fully available through ASML’s FlexRay, allowing for virtually unconstrained intensity distribution within the source pupil. FlexRay uses a programmable array of thousands of individually adjustable micro-mirrors to create any pupil shape in a matter of minutes. This is a major advantage over traditional illuminators, which require individual optical elements designed and fabricated specifically for each mask pattern. During FlexRay’s development, imec provided ASML with experimental wafer data that allowed comparing freeform and traditional illumination on a customer test pattern. FlexRay showed excellent performance in terms of pupil control and stability, as well as operational speed, and ability to match to existing illumination modes and other scanners.

Freeform versus standard illumination comparison for an 0.078µm2 SRAM contact layer (split for double patterning), exposed on an ASML XT:1950i with FlexRay illuminator. Left: SEM images at best focus and dose. Right: measured worst case EL, DoF (depth of focus) and MEEF (mask error enhancement function). The target in resist is 50nm with a spec of ±4 nm.

Finally, Imec proved the potential of freeform illumination with a demonstration of double patterning into a hard mask of the contact and metal layer for a 22nm node SRAM of 0.078µm2 bit cell area, with the application of simultaneous source & mask optimization ( Brion Tachyon SMO) and imaging using FlexRay illumination. Already from the images, but in particular from the metrics, it is very clear how freeform illumination leads to a pattern quality that cannot be realized using standard illumination. In this particular case, the XY asymmetric position of the freeform poles cannot be mimicked in a standard source.

Kurt Ronse, Director Lithography Program at imec says: “Imec has demonstrated that optimized freeform illumination will help push the limits of immersion . It will create margin that will allow further scaling. To explore this path, and to bring this technology to our partners, we will equip our XT:1900i litho tool with FlexRay.”

Explore further: Quick-change materials break the silicon speed limit for computers

add to favorites email to friend print save as pdf

Related Stories

IMEC reports major progress in EUV

Jul 14, 2008

IMEC reports functional 0.186µm2 32nm SRAM cells made with FinFETs from which the contact layer was successfully printed using ASML’s full field extreme ultraviolet (EUV) Alpha Demo Tool (ADT). Applied ...

Recommended for you

Wireless sensor transmits tumor pressure

11 hours ago

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Tim Cook puts personal touch on iPhone 6 launch

12 hours ago

Apple chief Tim Cook personally kicked off sales of the iPhone 6, joining in "selfies" and shaking hands with customers Friday outside the company's store near his Silicon Valley home.

Team improves solar-cell efficiency

Sep 19, 2014

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

Sep 19, 2014

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

User comments : 0