Mouse stem cell study offers new insights into body fat distribution

Jul 11, 2010

New research being presented today at the UK National Stem Cell Network Annual Science Meeting in Nottingham shows that adding fat to mouse stem cells grown in the lab affects their response to the signals that push them to develop into one or other of the main types of fat storage cells - subcutaneous (under the skin) or visceral (around the organs).

Visceral fat - the so-called "pot-belly" - indicates a much higher risk of cardiovascular disease and type 2 diabetes than subcutaneous fat. This discovery will help us to understand the fundamental biology underpinning these two major causes of obesity-related morbidity and mortality in the developed world.

During development, some groups of stem cells will go on to become adipose cells - the large globular cells that store and metabolise fats from our diets. This research suggests that the distribution of visceral versus subcutaneous adipose cells is at least in part down to the nutrition available to stem cells during the early stages of development.

The study, led by Professor Kevin Docherty of the University of Aberdeen, found that adding palmitate (a major component in ) to mouse stem cells affected how they responded to androgen and oestrogen - the which normally control the types of that become.

Professor Docherty said "This finding is an important insight as it suggests that nutrition in early development can affect how and where fat is stored in later life. We've known for a while that having a pot-belly suggests someone's risk of developing type 2 diabetes and heart disease is high, but there is still a lot to learn about why body fat distribution varies so much between people. Our research helps by putting another small piece into the puzzle.

"Type 2 diabetes used to be a disease that struck people in later life, but in the UK and some other developed countries we're seeing a worrying increase of this problem amongst overweight teenagers and younger adults. In the UK, 30% of teenagers are overweight or obese so it's crucial that we understand the fundamental biology of weight-related diseases so that we can develop better ways of preventing, treating and managing this serious problem."

The researchers hope that this study might lead to new insights into how to combat type 2 diabetes and cardiovascular disease.

Professor Docherty concluded: "The number one way of reducing the number of overweight people is improving diet and encouraging exercise, but we hope our research might eventually offer insights that lead to new treatments including drugs to reduce these high-risk stores around organs."

Explore further: Molecular gate that could keep cancer cells locked up

add to favorites email to friend print save as pdf

Related Stories

Fat transplantation can have metabolic benefits

May 06, 2008

When transplanted deep into the abdomen, fat taken from just under the skin comes with metabolic benefits, or at least it does in mice, reveals a new study in the May issue of Cell Metabolism.

Human virus makes fat stem cells fatter

Oct 25, 2006

U.S. research showing how a human virus targets fat stem cells to produce more, fatter, fat cells is providing insights into the study of obesity.

Enzyme promotes fat formation

Oct 12, 2007

The enzyme TPPII may contribute to obesity by stimulating the formation of fat cells, suggests a study in EMBO reports this week. The enzyme, TPPII, has previously been linked to making people feel hungry, but Jonathan Graff ...

New blood test might offer early warning of deep belly fat

Jul 10, 2007

Measuring levels of a chemical found in blood offers the best indicator yet of the amount of fat surrounding abdominal organs, according to a new study of lean and obese individuals reported in the July issue of Cell Metabolism, a publ ...

Recommended for you

Molecular gate that could keep cancer cells locked up

14 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

18 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0