Flemish researchers provide the first experimental evidence of dynamic allostery in protein regulation

Jul 09, 2010

The brand-new Jean Jeener Bio-NMR Center at the VIB Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, has already played a role in a scientific breakthrough that made it into the leading science journal Cell. Thanks to NMR technology, it is possible to determine the dynamic structure of proteins. So Flemish scientists put it to use to find out how the activity of certain proteins involved in the stress physiology of bacteria is regulated. This is a first in every way.

Proteins play a major role in the billions of processes that occur in the body, including the development of muscle and skin, the digestion of food, the growth of cells and the generation of human emotions. Our cells continuously produce proteins, but how these complex molecules exactly function is by and large not well understood.

Not only the but also the spatial structure of proteins is important for the performance of their functions. The ways in which they fold and unfold in three-dimensional space help determine the function of the molecules. So, without detailed knowledge about their structure, our understanding of their function usually remains partial. However, studying the spatial structure of proteins is anything but easy.

NMR is a promising technique for determining the structure of proteins in solution. Unlike X-ray diffraction - long the standard for determining the structure of proteins - NMR equipment can provide dynamic structure information. Even vibrations and rotations of molecules on an can be visualized. The Bio-NMR center at the VIB Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, only opened May 7, 2010, but its 600-MHz and 800-MHz spectrometers have already helped produce a first article in a top journal.

Regulation of is a mechanism that allows cells to adapt to rapidly changing environmental conditions. In prokaryotes, genes are typically clustered in operons with each operon being regulated as an entity. The toxin-antitoxin (TA) system, which plays a role in stress, is one instance of this process.

Abel Garcia-Pino and his colleagues study the Phd-Doc toxin-antitoxin operon of P1 bacteriophages (small viruses) under the leadership of Remy Loris. Until now, no one has been able to explain the regulatory mechanism of this system at the molecular level. Hence, these VIB researchers are the first to demonstrate that, when Doc binds to the intrinsically unfolded C-terminus of Phd, it structures the DNA-binding domain of Phd. This type of communication process between two domains is called allostery. Already in the sixties allostery was generally assumed to be an important regulation mechanism in enzymes and Monod even called it the second secret of life (the first one being the genetic code). Several years ago, allostery between intrinsically unfolded protein domains became accepted, based on theoretical models, but now it has been experimentally demonstrated for the first time. The regulation mechanism presented here is new and probably also applies to other genes.

The NMR technology is the only technology that can detect and quantify folding and conformational changes in proteins while simultaneously providing detailed structural information. Besides its applications in fundamental biology, NMR is also a promising technology for the identification of therapeutic drugs.

Explore further: For cells, internal stress leads to unique shapes

Provided by Flanders Institute for Biotechnology

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Bacteria pack their own demise

Jul 30, 2009

Numerous pathogens contain an 'internal time bomb', a deadly mechanism that can be used against them. After years of work, VIB researchers at the Vrije Universiteit Brussel (VUB) were able to determine the structure and operating ...

First NMR Signal of a Copper Site in Azurin Obtained

Feb 18, 2010

(PhysOrg.com) -- Metalloproteins, such as the copper-containing azurin, play a major role in catalyzing electron transfer in cellular reactions. Understanding how their structure relates to function can give ...

Recommended for you

For cells, internal stress leads to unique shapes

1 hour ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

2 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

5 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.