Ocean stirring and plankton patchiness

Jun 21, 2010
This near-true color MODIS satellite image shows a coccolithophore (phytoplankton) bloom in the Iceland Basin. Visible are the patches and filamentous structures of the bloom. The view is a bit like what you would see if you were an Astronaut in space and you took away Earth’s atmosphere. The image is a composite for the period July 5-11, 2007. The image spans 14-26˚W, 55-62˚N. Credit: NEODAAS/PML

Computer simulations performed by researchers at the National Oceanography Centre and the University of Glasgow show how oceanic stirring and mixing influence the formation and dynamics of plankton patches in the upper ocean.

Tiny free-floating marine plants called phytoplankton live in vast numbers in the sunlit upper . Through the process of photosynthesis, they build carbon compounds such as sugars starting with just water and carbon dioxide, which is thereby drawn down from the atmosphere.

Phytoplankton also need nutrients such as phosphate and iron, shortage of which can limit their population growth. They are also preyed upon by tiny planktonic animals called zooplankton.

"Interactions between phytoplankton, nutrients, zooplankton and the physical environment lead to complex dynamics, which we seek to understand using computer models," explained Emma Guirey, whose work on the problem was done as part of her PhD studies. "These complex dynamics can produce the patchiness of phytoplankton at the ocean surface that is invariably seen in satellite images and observed at sea during research cruises."

Guirey and her colleagues applied the methods of synchronisation theory - previously used to explain such phenomena as the co-ordinated flashing of fireflies along whole riverbanks. Initially they studied the balance between localised increases in phytoplankton populations and small-scale mixing, such as that due to breaking waves, in creating patches. Patchiness was found to persist despite the mixing which might be expected to smooth out the patches by blending them together.

The initial studies neglected the effects of stirring, or 'advection' by large scale such as the Gulf Stream and Kuroshio, but this is included in the most recent . This stirring stretches the patches out into long filaments. However, the patches still resist dispersal.

"What is exciting is that the inclusion of large-scale advection, far from disrupting plankton patchiness, actually creates the kind of filamentary structure that we often observe in real-life plankton populations. Application of synchronisation theory has given us a new perspective on the production of this complex patchiness," said Guirey.

Explore further: Neutron tomography technique reveals phase fractions of crystalline materials in 3-dimensions

More information: Guirey, E., Bees, M., Martin, A. & Srokosz, M. Persistence of cluster synchronization under the influence of advection. Physical Review E 81, 051902 (2010). DOI:10.1103/PhysRevE.81.051902

Provided by National Oceanography Centre, Southampton

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

NASA Development May Help Solve Ocean Biology Problem

Feb 11, 2005

NASA and university scientists have made a breakthrough in using satellites to study the tiny, free-floating ocean plants, called phytoplankton. The plants form the base of the ocean food chain and produce half of the oxygen ...

Study Solves Ocean Plant Mystery

Aug 31, 2006

A NASA-sponsored study shows that by using a new technique, scientists can determine what limits the growth of ocean algae, or phytoplankton, and how this affects Earth's climate.

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

8 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

Spin-based electronics: New material successfully tested

Jul 30, 2014

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

User comments : 0