Ocean stirring and plankton patchiness

Jun 21, 2010
This near-true color MODIS satellite image shows a coccolithophore (phytoplankton) bloom in the Iceland Basin. Visible are the patches and filamentous structures of the bloom. The view is a bit like what you would see if you were an Astronaut in space and you took away Earth’s atmosphere. The image is a composite for the period July 5-11, 2007. The image spans 14-26˚W, 55-62˚N. Credit: NEODAAS/PML

Computer simulations performed by researchers at the National Oceanography Centre and the University of Glasgow show how oceanic stirring and mixing influence the formation and dynamics of plankton patches in the upper ocean.

Tiny free-floating marine plants called phytoplankton live in vast numbers in the sunlit upper . Through the process of photosynthesis, they build carbon compounds such as sugars starting with just water and carbon dioxide, which is thereby drawn down from the atmosphere.

Phytoplankton also need nutrients such as phosphate and iron, shortage of which can limit their population growth. They are also preyed upon by tiny planktonic animals called zooplankton.

"Interactions between phytoplankton, nutrients, zooplankton and the physical environment lead to complex dynamics, which we seek to understand using computer models," explained Emma Guirey, whose work on the problem was done as part of her PhD studies. "These complex dynamics can produce the patchiness of phytoplankton at the ocean surface that is invariably seen in satellite images and observed at sea during research cruises."

Guirey and her colleagues applied the methods of synchronisation theory - previously used to explain such phenomena as the co-ordinated flashing of fireflies along whole riverbanks. Initially they studied the balance between localised increases in phytoplankton populations and small-scale mixing, such as that due to breaking waves, in creating patches. Patchiness was found to persist despite the mixing which might be expected to smooth out the patches by blending them together.

The initial studies neglected the effects of stirring, or 'advection' by large scale such as the Gulf Stream and Kuroshio, but this is included in the most recent . This stirring stretches the patches out into long filaments. However, the patches still resist dispersal.

"What is exciting is that the inclusion of large-scale advection, far from disrupting plankton patchiness, actually creates the kind of filamentary structure that we often observe in real-life plankton populations. Application of synchronisation theory has given us a new perspective on the production of this complex patchiness," said Guirey.

Explore further: Tiny magnetic sensor deemed attractive

More information: Guirey, E., Bees, M., Martin, A. & Srokosz, M. Persistence of cluster synchronization under the influence of advection. Physical Review E 81, 051902 (2010). DOI:10.1103/PhysRevE.81.051902

Provided by National Oceanography Centre, Southampton

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

NASA Development May Help Solve Ocean Biology Problem

Feb 11, 2005

NASA and university scientists have made a breakthrough in using satellites to study the tiny, free-floating ocean plants, called phytoplankton. The plants form the base of the ocean food chain and produce half of the oxygen ...

Study Solves Ocean Plant Mystery

Aug 31, 2006

A NASA-sponsored study shows that by using a new technique, scientists can determine what limits the growth of ocean algae, or phytoplankton, and how this affects Earth's climate.

Recommended for you

Particles, waves and ants

4 hours ago

Animals looking for food or light waves moving through turbid media – astonishing similarities have now been found between completely different phenomena.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.