Physicists build quantum amplifier with single artificial atom

May 25, 2010 By Lisa Zyga feature
Quantum amplification by an artificial atom. Part (a) shows a sketch of a three-level artificial atom in which population inversion can be created by pumping the atom from the ground state to the second excited state. Part (b) shows the spectroscopy of the three-level atom.

(PhysOrg.com) -- By demonstrating how a single artificial atom can be used to amplify electromagnetic waves, physicists from Japan are opening up new possibilities for quantum amplifiers, which can be used in a variety of electronic and optical applications.

As a device that uses to amplify a signal, a quantum amplifier comes in many different forms. Perhaps the most well-known example is the laser, which uses the process of stimulated emission to emit photons from optically stimulated atoms. Like most quantum amplifiers, lasers use intra-atomic transitions with many atoms (or molecules) to achieve signal amplification, and the transition frequencies are not easily tunable.

One way to realize a quantum amplifier that is tunable and fully controllable is to create a system that uses only a single atom or molecule. However, single-atom quantum amplifiers have so far been very difficult to realize due to the fact that natural atoms can only be weakly coupled to the that they must amplify.

Now, researchers O.V. Astafiev and coauthors from NEC Nano Electronics Research Laboratories and RIKEN Advanced Science Institute, both in Ibaraki, Japan, have found a way to overcome this difficulty. In their new study, the researchers have demonstrated how a single artificial atom can be strongly coupled to the electromagnetic modes of open one-dimensional space, resulting in tunable and controllable electromagnetic wave amplification.

The quantum amplification is based on the ability to pump the three-state artificial atom from its ground state to the higher of its two excited states. To do this, the researchers applied microwave fields at a specific pumping frequency that propagated along a one-dimensional transmission line toward the point-like atom. The photons induced spontaneous emission from the atom, causing it to generate a scattered wave at a specific frequency, amplifying the overall signal.

“The key process is the preparation of population inversion (same as in lasers),” coauthor Abdufarrukh Abdumalikov from RIKEN told PhysOrg.com. “Our atom has three discrete energy levels. We apply a microwave which excites it from the ground state to the second excited state. From the latter the atom relaxes partly to ground state and partly to first excited state. When the population of the first excited state is larger than that of the ground state we have a population inversion. Then we apply another microwave signal which we would like to amplify. It should be in resonance with the ground state - first excited state transition. It stimulates this transition and the atom emits a photon which adds up to the signal. The principle is the same as in lasers.”

The researchers calculated the maximal gain to be about 1.09, corresponding to an average of 109 emitted photons for every 100 incident photons. Abdumalikov explained that the maximum theoretical gain is 1.125, or 112.5 emitted photons for every 100 incident photons.

Overall, the amplification by a single artificial atom provides an example of an elementary quantum amplifier, which could be used as a building block for large-scale, tunable quantum amplifiers for various applications. In addition, the demonstration of single-atom quantum amplification could open up possibilities for developing new types of on-chip quantum amplifiers and other quantum devices, which could reveal novel quantum optical phenomena due to the devices’ strong coupling, tunability and controllability.

“This is the first work of this kind,” Abdumalikov said. “If we use many atoms we can obtain larger gain. Such amplifiers can be used in other research fields where low noise is needed. One such research field is an on-chip version of cavity quantum electrodynamics (QED) that is circuit QED.”

Explore further: The importance of three-way atom interactions in maintaining coherence

More information: O.V. Astafiev, et al. “Ultimate On-Chip Quantum Amplifier.” Physical Review Letters 104, 183603 (2010). Doi:10.1103/PhysRevLett.104.183603

4.4 /5 (23 votes)

Related Stories

From a classical laser to a 'quantum laser'

Mar 31, 2010

Rainer Blatt's and Piet Schmidt's research team from the University of Innsbruck have successfully realized a single-atom laser, which shows the properties of a classical laser as well as quantum mechanical ...

Yale scientists bring quantum optics to a microchip

Sep 08, 2004

A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom"). This represents a new paradigm in which ...

Controlling the interaction between light and matter

Apr 30, 2010

(PhysOrg.com) -- "One of the most exciting things about this is that it gives us nice, clean control over the interaction between light and matter," William Kelly tells PhysOrg.com. "Our technique has the potential to giv ...

Could a quantum motor do work?

Jul 07, 2009

(PhysOrg.com) -- Ever since the idea of a quantum world was discovered, physicists have been trying their best to create applications and uses that mirror the accomplishments of the classical world. However, due to the fact ...

Recommended for you

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

Dec 24, 2014

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Ultrasounds dance the 'moonwalk' in new metamaterial

Dec 23, 2014

Metamaterials have extraordinary properties when it comes to diverting and controlling waves, especially sound and light: for instance, they can make an object invisible, or increase the resolving power of ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

danman5000
May 25, 2010
This comment has been removed by a moderator.
Alizee
May 25, 2010
This comment has been removed by a moderator.
milz
not rated yet May 29, 2010
quantum amplifier ?
you mean, a one-atom laser for EM in the microwave regime, no?
danman5000
not rated yet Jun 16, 2010
So my first post asking "What is an artificial atom?" was removed by the admins for "pointless verbiage." And they removed it almost a month after I posted it.

Good call, PhysOrg staff. Remove legitimate questions about articles but not the 100-post long pointless arguments about religion.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.