Could a quantum motor do work?

July 7, 2009 By Miranda Marquit feature

( -- Ever since the idea of a quantum world was discovered, physicists have been trying their best to create applications and uses that mirror the accomplishments of the classical world. However, due to the fact that the quantum world is often quirky and not always well understood, sometimes these attempts go awry. In the case of a quantum motor, though, a theoretical paper out of the University of Augsburg in Germany might shed some light on how some of the quantum quirks might be overcome, resulting in an ac-driven quantum motor.

Sergey Denisov is one of the coauthors of “ac-Driven Atomic Quantum Motor,” which appears in Physical Review Letters. Along with Alexey Ponomarev and Peter Hänggi, Denisov worked to set up a quantum motor. With a quantum motor, rotation would occur both clockwise and counterclockwise, cancelling out movement and resulting in no work output. Denisov explains how the Augsburg team managed to overcome this problem: “We have to use a starter. Using two atoms, we are able to get net movement for our motor. One atom serves as a carrier, and the other as the driver starter.”

The quantum motor is set up using cold atoms trapped in an optical lattice shaped into a ring. A magnetic field is applied to the ring. A carrier atom is charged, allowing it to “feel” the magnetic field and forcing it to move. However, this single atom moves in such a way as to produce no net motion. This is where the starter atom comes in. Denisov says that an uncharged atom is introduced into the system, forcing net movement into the system. Further probing with the use of a force akin to gravity yielded the theoretical possibility that this motor could work under load.

Denisov points out that so far, this work is just theoretical. “We are not as concerned about application and technology,” he says, “although this is likely to have its uses in the future. We are more excited from a theoretical point of view. We wanted to know how many atoms are needed to make a quantum motor. The next step is to see what happens if we introduce more atoms into the system. We want to expand our set up to see if we could get more work out of the motor.”

However, before the Augsburg group gets too excited about looking into expanding their system, the two-atom motor needs to be tested experimentally. “While it would be difficult to set up such an experiment,” Denisov acknowledges, “it is doable.” The biggest problem, he says, is that atoms tend to adsorb and emit photons when excited to this degree. These photons would cause stability problems for the system. While a solution to that issue would have to be found, Denisov nonetheless believes that testing should be possible.

“Optical potential has been looked at for quite some time, and access to cold atoms is not so rare. There are at least 15 labs that can prepare such a set of atoms. Besides, similar experiments have been done using a cloud-like set-up. With some effort, it should be possible to test our theory in the lab using current technology.”

More information: A.V. Ponomarev, S. Denisov, and P. Hänggi, “ac-Driven Atomic Quantum Motor,” (2009). Available online: .

Copyright 2009
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Can alkaline earth metals be used in quantum computing?

Related Stories

Can alkaline earth metals be used in quantum computing?

November 14, 2008

( -- "There are a number of different proposals for quantum computing," Andrew Daley tells "These include solid state or semiconductor as well as atomic and molecular systems. We are considering atomic ...

Taking entanglement beyond one ebit

January 23, 2007

“Entanglement is a main part of quantum mechanics, and it is important to obtain a high degree of it in physical systems,” Lucas Lamata tells Lucas Lamata is a scientist with the Institute for Fundamental ...

Using Current Technology to Prepare for Quantum Computing

August 14, 2006

“If we use the environment in the process,” explains Almut Beige, “we don’t need to control everything.” Dr. Beige and two students working with her at Imperial College London, Jeremy Metz and Michael Trupke, have ...

Controlling Photons for Use in Quantum Computing

February 13, 2007

“Quantum information science makes use of the quantum nature of particles to perform computation,” Gerhard Rempe explains to “One approach is to use single particles of light – photons – as the basis ...

Combining solid-state physics with quantum optics

October 19, 2007

One of the more interesting advances in science is the use of the atom chip. As the demands of technology require smaller and smaller components, studying the fundamentals of physics at the quantum level will become increasingly ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.