Scientists use biomedical technique to image marine worm

May 18, 2010
This three-quarter view of the burrowing marine worm, Nephtys hombergii, was imaged using micro-computed X-ray tomography. Credit: John Dinley

Scientists have for the first time successfully imaged the internal tissues of a soft bodied marine worm at high resolution using a technique borrowed from biomedical science. The findings are published in the Journal of Microscopy.

"Invertebrate are important for the functioning of , and studies of their internal anatomy are needed to understand their physiology, ecology and evolution," explained John Dinley of the University of Southampton's School of Ocean and Earth Science based at the National Oceanography Centre, Southampton.

"Techniques such as dissection and the cutting of sections for light or studies are time consuming and destructive. What is really needed is a reliable, non-invasive method that can be used in the laboratory," he added.

In conjunction with Professor Ian Sinclair of the University of Southampton's Department of Engineering and other colleagues, Dinley has helped develop the use of a technique called micro-computed x-ray tomography (micro-CT) for scanning the internal structure soft-bodied marine worms.

In micro-CT scanning, the object to be scanned is rotated within a stationary x-ray beam, and magnified images are received onto a detector screen. The researchers have successfully used a bench-top micro-CT scanner to produce high-definition images of the internal structure of the predatory, burrowing worm Nephtys hombergii, specimens of which were collected from the sands of Poole Harbour.

"We believe that this is the first time this technique has been developed and successfully applied to the of invertebrates without the use of tissue enhancing stains or radio-opaque fluids," said Dinley.

Impressive three-dimensional rotating and fly-through images have also been produced, which can be invaluable in the assessment of many aspects of functional anatomy.

As a direct result of this work, a micro-CT machine has been installed in the Natural History Museum in London. Now museum specimens or even living specimens can be scanned and their internal organs carefully examined and compared with this rapid, non-invasive and non-destructive technique.

"Large-scale comparative anatomical studies are now feasible that will lead to greater evolutionary insights," says Dinley.

Explore further: Researchers discover new strategy germs use to invade cells

Provided by National Oceanography Centre, Southampton

5 /5 (4 votes)

Related Stories

Bat researchers no longer flying blind on echolocation

Jan 24, 2010

Researchers at The University of Western Ontario led an international and multi-disciplinary study that sheds new light on the way that bats echolocate. With echolocation, animals emit sounds and then listen ...

Enigmatic sea urchin structure catalogued

Jun 09, 2009

A comprehensive investigation into the axial complex of sea urchins (Echinoidea), an internal structure with unknown function, has shown that within that group of marine invertebrates there exists a struct ...

New X-ray microscope for science and industry

Jul 03, 2006

Australian researchers have taken X-ray technology to a new level, developing and using high-powered microscopes to see inside objects and capture high-resolution images of their subsurface structures.

Recommended for you

Researchers discover new strategy germs use to invade cells

6 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

7 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0